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SignFi: Sign Language Recognition Using WiFi

YONGSENMA, GANG ZHOU, SHUANGQUANWANG, HONGYANGZHAO, andWOOSUB
JUNG, Computer Science Department, College of William and Mary, USA

We propose SignFi to recognize sign language gestures using WiFi. SignFi uses Channel State Information (CSI) measured by
WiFi packets as the input and a Convolutional Neural Network (CNN) as the classification algorithm. Existing WiFi-based sign
gesture recognition technologies are tested on no more than 25 gestures that only involve hand and/or finger gestures. SignFi
is able to recognize 276 sign gestures, which involve the head, arm, hand, and finger gestures, with high accuracy. SignFi
collects CSI measurements to capture wireless signal characteristics of sign gestures. Raw CSI measurements are pre-processed
to remove noises and recover CSI changes over sub-carriers and sampling time. Pre-processed CSI measurements are fed to
a 9-layer CNN for sign gesture classification. We collect CSI traces and evaluate SignFi in the lab and home environments.
There are 8,280 gesture instances, 5,520 from the lab and 2,760 from the home, for 276 sign gestures in total. For 5-fold cross
validation using CSI traces of one user, the average recognition accuracy of SignFi is 98.01%, 98.91%, and 94.81% for the
lab, home, and lab+home environment, respectively. We also run tests using CSI traces from 5 different users in the lab
environment. The average recognition accuracy of SignFi is 86.66% for 7,500 instances of 150 sign gestures performed by 5
different users.
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1 INTRODUCTION
According to the World Federation of the Deaf (WFD), there are 70 million deaf people using sign language as
their first language; many hearing people also use sign language as their first or second language1. In the U.S.
alone, there are one half to two million people using American Sign Language (ASL) in the 1990s [17]. Many
colleges accept ASL as a foreign language credit, and more people are learning and using ASL. Modern Language
Association conducted a survey of course enrollments in languages other than English from 2,696 institutions in
the U.S. [9]. According to the survey, the number of ASL enrollments is consistently increasing from year 2002 to
2013. There are 109,577 ASL enrollments at 2013, making ASL the language with the third most enrollments.

1https://wfdeaf.org/human-rights/crpd/sign-language/
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There is a huge barrier between the Deaf community and people that do not understand or know little about
sign language. A sign language recognition system would help break this barrier. There are some sign language
recognition systems using cameras [34] or Kinect [13, 28, 36, 47], but they are subject to lighting conditions. Some
systems use Leap Motion [6–8, 20, 23, 24, 30, 36, 47], but they can recognize only finger gestures and are very
sensitive to the distance and displacement of the Leap Motion sensor and the human. Some systems use gloves
and motion sensors, like SignAloud [26], but they are intrusive and require sensors to be attached on fingers.
Many papers have shown that Channel State Information (CSI) of WiFi can be used to recognize hand [1, 21,

29, 33, 37, 40] and finger [18, 21, 38, 48] gestures in a non-intrusive way. WiFi signals are used to recognize ASL
gestures in [18, 21, 33]. These are the most relevant papers to our work. But they are only evaluated on simple
ASL gestures: 5 hand gestures in [33], 9 finger postures in [18], and 25 hand/finger gestures in [21]. Our object is
to recognize nearly 300 basic sign gestures [35] that are frequently used in daily life. The classification algorithm
should have high recognition accuracy and low computational cost during testing.
Existing classification algorithms have very low recognition accuracy when the number of sign gestures

increases to nearly 300. Both papers [18, 21] use k-Nearest Neighbor (kNN) with Dynamic Time Wrapping (DTW)
as the classification algorithm. We test it in a lab environment using CSI traces of 276 sign gestures. The average
recognition accuracy of kNN with DTW is only 68% for 276 sign gestures. Moreover, kNN with DTW takes
extremely long time in the testing stage when there are nearly 300 possible classes. Thus, new classification
algorithms are needed for sign gesture recognition using WiFi.
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Fig. 1. Comparison of different sign language recognition tech-
nologies. More details are shown in Table 4.

We propose SignFi to accurately recognize sign ges-
tures using a 9-layer Convolutional Neural Network
(CNN). It collects CSI measurements to capture wire-
less signal characteristics of sign gestures. After remov-
ing noises, SignFi feeds the pre-processed CSI measure-
ments to a 9-layer CNN for sign gesture classification.
We collect CSI traces for 276 sign gestures, each with
20 instances for the lab environment and 10 instances
for the home environment. The average recognition
accuracy of SignFi is 98.01%, 98.91%, and 94.81% for the
lab, home, and lab+home environment, respectively.
Fig. 1 compares SignFi with existing sign language
recognition technologies. Most of the existing tech-
nologies are tested on simple ASL gestures, such as
9 digital numbers and 26 alphabet letters. SignFi is
the only one that is able to recognize 276 sign ges-
tures with 94.81% accuracy. In summary, we make the
following contributions:

(1) We propose a new signal processing technique to remove noises from raw CSI measurements. The information
about how CSI changes over sub-carriers and sampling time is recovered.

(2) We present a 9-layer Convolutional Neural Network for accurate sign gesture recognition using WiFi signals.
(3) Our design has above 94% accuracy for 8,280 instances of 276 sign gestures from lab and home environments.

We also run tests on 7,500 instances of 150 sign gestures from 5 different users and get 86.66% accuracy.

The rest of the paper is organized as follows. Section 2 gives background and motivation of sign language
recognition using WiFi signals. The SignFi design, including signal processing and a 9-layer CNN, is presented
in Section 3. Section 4 shows experiment setup and evaluation results. Section 5 summaries related works and
compares them with SignFi. Section 6 concludes the paper and discusses future work.
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2 BACKGROUND AND MOTIVATION
Channel State Information (CSI) captures how wireless signals propagates from the transmitter to receiver at a
certain carrier frequency. Wireless signals usually travel with multiple paths. For a multi-path channel with N
paths, the CSI value for each transmit and receive antenna pair of each sub-carrier is

h =
N∑
n

ane
−j2πdn/λ+jϕn , (1)

where an is the attenuation factor, dn is the path distance from the transmitter to the receiver, ϕn is the phase
shift along the nth path, and λ is the carrier wavelength [39]. h is a complex number that can be expressed by its
amplitude and phase. If either the amplitude or phase of at least one path changes, the CSI value changes.
Since CSI captures how wireless signals are reflected by surrounding objects, it can be used to recognize

hand [1, 21, 29, 33, 37, 40] and finger [18, 21, 38, 48] gestures. Three papers [18, 21, 33] use WiFi signals to
recognize ASL gestures: 5 hand gestures in [33], 9 digits finger postures in [18] and 25 hand/finger gestures in [21].
Our object is to recognize not only simple sign gestures but nearly 300 basic ASL gestures that are frequently
used in daily life. The classification algorithm should have high recognition accuracy and low computational cost
during testing. Both [18] and [21] use k-Nearest Neighbor (kNN) with Dynamic Time Wrapping (DTW) as the
classification algorithm. The question is whether kNN with DTW still works when the number of sign gestures
increases by one order of magnitude.
In terms of computational cost of testing, kNN with DTW is not very efficient when there are nearly 300

possible classes. Although kNN with DTW takes no time to train, it has extremely high overhead at testing time.
For each testing sample, kNN with DTW needs to compare it with every single training sample. This requires a
lot of computation resources during testing when there are 276 possible classes and each training/testing sample
has 3,600 data points. Even for only 25 sign gestures, kNN with DTW needs more than 5 seconds per sign gesture
during testing, which is shown later in Section 4.2.2.

(a) Sign gesture for "Father" (b) Sign gesture for "Mother"

Fig. 2. Sign words "Father" and "Mother" have the same hand
gesture and finger posture, but they need the dominate hand
in different locations.

In terms of recognition accuracy, there are three
challenges for recognizing nearly 300 sign gestures: (1)
the number of sign gestures is large; (2) many different
sign gestures have similar arm, hand, or finger move-
ments; (3) many sign gestures involve complex and di-
verse movements. First, no more than 25 sign gestures
are tested in [18, 21, 33] for sign gesture recognition
using WiFi. There are nearly 300 basic sign words that
are frequently used in daily life [35]. Second, since
many sign words have similar gestures or postures, it
is very hard to distinguish them from each other. For
example, sign words "Father" and "Mother" have the
same hand gesture and finger posture, but they require
the dominant hand in different locations, as shown in
Fig. 2. Finally, many sign gestures involve head, arm, hand, and finger movements. The dominant hand is not
constrained in a small area; it can be near different parts of the human body.
For the 276 sign gestures used in our experiments, we check their movement types using the ASL-LEX

database [2]. The database gives sign types, path movement types, general locations, specific locations, and
moving/foregrounded fingers of the dominant hand for nearly 1,000 sign gestures. For the definitions and
descriptions of each category, please check ASL-LEX [2]. We manually add the labels for gestures that are not
included in ASL-LEX. Fig. 3 shows the number of sign gestures in each category. Many of the 25 sign gestures
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(a) Battison’s Sign Types
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(b) Path Movement Types
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t: thumb finger

i: index finger

m: middle finger

r: ring finger

p: pinky finger

(c) Moving/Foregrounded Fingers
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(d) General Hand Locations
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(e) Specific Hand Locations

Fig. 3. Moving/foregrounded fingers, general and specific locations of the dominant hand of the 276 sign gestures used in
our experiments. They involve more complex and diverse movements than the 25 sign gestures.

are evenly distributed in 3 or 4 categories, which makes them different from each other. For the 276 sign gestures,
there are much more gestures in the same category, which makes them harder to be distinguished. For specific
hand location, the 276 sign gestures have 12 categories that are not covered by the 25 sign gestures. Therefore, it
is much harder to recognize the 276 sign gestures.

1 2 3 4 5
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Fig. 4. The average recognition accuracy of kNN with DTW
decreases from 96% to 68% when the number of sign gestures
increases from 25 to 276.

Can kNN with DTW still work for the 276 sign
gestures? To answer this question, we collect CSI mea-
surements and evaluate kNN with DTW in a lab en-
vironment. Fig. 4 shows the recognition accuracy of
kNN with DTW for 25 and 276 sign gestures. For the
25 sign gestures, kNN with DTW has above 96% ac-
curacy, which is in consistent with [18, 21]. However,
the average accuracy drops to 68% for the 276 sign
gestures. Thus, new algorithms are needed to improve
recognition accuracy and reduce cost during testing
for sign language recognition using WiFi signals. For
this purpose, we propose SignFi using a 9-layer CNN
as the classification algorithm. It has high recognition
accuracy and low cost during testing.
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Fig. 5. SignFi Overview

3 SIGNFI DESIGN
The SignFi overview is shown in Fig. 5. SignFi collects CSI measurements by WiFi preambles. Raw CSI measure-
ments are pre-processed to remove noises. Both amplitude and phase of the pre-processed CSI are fed to a 9-layer
CNN for sign classification. In this paper, we mainly focus on the classification algorithm. CSI measurements are
manually segmented for each sign gesture. We use these manually segmented CSI traces for both the proposed
and existing classification algorithms for fair comparison. We leave automatic time segmentation to future work.

3.1 SignFi Signal Processing
We need to remove noises before feeding raw CSI measurements to the classification algorithm. In our experiments,
we use a linear antenna array with 3 transmit antennas. In this case, the CSI of the ith antenna is

hi = he
−j2π (i−1)∆ cosψ =

(
N∑
n

ane
−j2πdn/λ+jϕn

)
e−j2π (i−1)∆ cosψ , (2)

where h is the multi-path CSI (equation (1) in Section 2), ∆ is the transmit antenna separation normalized to
the unit of carrier wavelength, andψ is the angle of departure with respect to the transmit antenna array [39].
CSI hi captures the impact of multi-path channel propagation and the arrangement of transmit antenna array.
The transmit antenna array adds the term (i − 1)∆ cosψ to the CSI phase of the ith transmit antenna. We can
re-write the phase of hi as ∠hi = Φi − 2π (i − 1)∆ cosψ , where Φi is the CSI phase caused by multi-path channel
propagation. Our interest is to get the CSI phase ∠hi for each sub-carrier.

In real-world WiFi systems, the sampling clocks and carrier frequencies of the transmitter and receiver are not
synchronized. This leads to Sampling Time Offset (STO) and Sampling Frequency Offset (SFO) which introduce
random phase shifts. The measured CSI phase of the kth sub-carrier of the ith transmit antenna is

Θi,k = ∠hi,k − 2π fδ (k − 1)ξ = Φi,k − 2π (i − 1)∆ cosψ − 2π fδ (k − 1)ξ , (3)

where Φi,k is the CSI phase caused by multi-path channel propagation, fδ is the frequency spacing between two
consecutive sub-carriers, and ξ is the phase offset caused by STO and SFO. As shown in Fig. 6a, the unwrapped
CSI phases of each transmit antenna have different slopes caused by the term (i − 1)∆ cosψ . We estimate ξ by
minimizing the linear fitting error across K sub-carriers and N transmit antennas

ξ̂ = argmin
ω

∑
i,k

(Θi,k + 2π (i − 1)η + 2π fδ (k − 1)ω + β)2, (4)

where η,ω and β are the fitting variables of multiple linear regression. The pre-processed CSI phase after removing
random phase shifts is

∠̂hi,k = Θi,k + 2π fδ (k − 1)ξ̂ . (5)
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Fig. 6. Raw CSI measurements do not capture how CSI phases change over sub-carriers and sampling time.

Since the measured CSI phases are wrapped in the range of [−π ,π ], raw CSI measurements give wrong
information about how CSI phases change over sub-carriers and sampling time. The pre-processed CSI phases
are unwrapped to recover the lost information. As shown in Fig. 6b, raw CSI phases change periodically from −π
to π , while pre-processed CSI phases change nearly linearly in a wider range. Similarly, CSI phase variations
over time are also corrected after CSI pre-processing. As shown in Fig. 6c, raw CSI phases of the first and second
transmitting antenna change similarly, but they have very different changing patterns for pre-processed CSI
phases. Raw CSI phases fail to capture the impact of the arrangement of the transmit antenna array. They give
redundant information about how CSI phases change. The pre-processed CSI phases recover the information
about how CSI phases change over sub-carriers and sampling time. The pre-processed CSI phases can be used by
other CSI-based sensing applications.

3.2 Gesture Recognition Algorithm
SignFi uses a 9-layer CNN as the classification algorithm. CNNs are able to automatically learn parameters and
features to find effective solutions for complex problems. Besides, CNNs are very fast to run in the inference
stage even when the number of classes is very large. A neural network can be organized into multiple layers. The
ith layer of a n-layer neural network is given by

y(i) = д(i)
(
W (i)x (i) + b(i)

)
, (6)

where y(i) is the output, x (i) is the input,W (i) is the weight matrix, b(i) is the bias vector, and д(i) is the activation
function [10]. The output of the previous layer is the input of the current layer, i.e., x (i) = y(i−1). For the first
layer, x (1) = x is the original input. For the last layer, y(n) = y is the final output. For classification problems, y
contains labels in corresponding to the input x . A CNN is simply a neural network with at least one of its layers
involving convolution operations.

Neural networks learn the weightsW and biases b, using an optimization algorithm, at each layer to minimize
the cost function. SignFi uses Stochastic Gradient Descent with Momentum (SGDM) to update the weights and
biases. It takes small steps in the direction of the negative gradient of the loss function:

θl+1 = θl − α∇E(θl ) + γ (θl+1 − θl ), (7)
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where θ is the parameter vector, l is the iteration index, α is the learning rate, E(θ ) is the loss function, and γ is
the momentum term [10]. The momentum term γ controls the contribution of the previous gradient step to the
current iteration. SignFi uses a momentum term of 0.9 and a learning rate of 0.01. To prevent overfitting, SignFi
uses L2 regularization to add a regularization term for the weights to the loss function E(θ ). The regularized loss
function is

ER (θ ) = E(θ ) + λΩ(W ), (8)
where λ is the regularization factor, and Ω(W ) =W TW /2 is the regularization function. The regularization
factor of SignFi is 0.01. Fig. 7 shows the architecture and parameter settings of the 9-layer CNN used in SignFi.

3.2.1 Input Layer. The input layer converts pre-processed CSIs of each sign gesture into a multi-dimensional
tensor, which is the input format required by the CNN. This layer does not learn any parameters; it just prepares
data input for the following layers. For SignFi, the size of each CSI matrix is size(csi) = (1, 3, 30). There are 200
CSI samples for each sign gesture, so the size of CSI trace for each sign gesture is (3, 30, 200). The CSI amplitude
and phase, each with size of (3, 30, 200), of each sign gesture are combined and reshaped to a tensor of size
(200, 60, 3) by the input layer.

3.2.2 Convolutional Layer. The convolutional layer replaces matrix multiplications with convolution opera-
tions. SignFi uses two-dimensional convolution:

S(i, j) = (I ∗ K)(i, j) =
∑
m

∑
n

I (m,n)K(i −m, j − n), (9)

where I is the input, and K is the kernel [10]. Fig. 8 shows an example of two-dimensional convolution with a 2×2
kernel. The convolutional layer divides the input into multiple regions. Within each region, it computes a dot
product of the input with some weights. The matrix containing the weights is called a kernel. The convolutional
layer goes through the input vertically and horizontally with the same kernel. The step size of the convolutional
layer moves each time is called a stride. SignFi uses three 3 × 3 kernels and stride of 1 in both vertical and
horizontal directions. To preserve the output size of the convolutional layer and ensure all inputs are used for the
same number of times, SignFi uses a padding of 1 in both vertical and horizontal directions. It pads a column/row
of zeros around the edges of the original input.
The number of kernels controls the number of channels in the output of the convolutional layer. For each

input region, the convolutional layer adds a bias term to the dot product of the input and the kernel. The kernel,
along with its bias term, is also called a feature map. The convolutional layer learns the feature maps while
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Fig. 9. Impact of batch normalization, ReLU, pooling, and dropout on recognition accuracy using leave-one-subject-out
validation for 25 sign gestures and 5 users. Each user repeats 10 times for each of the 25 sign gestures.

going through the input. Since the convolution layer shares the same feature map for multiple input regions, it
significantly reduces computation overhead for both training and testing. Convolutional layers are very effective
and widely used in complex problems such as computer vision and natural language processing tasks. The impact
of convolution on recognition accuracy of SignFi is shown later in Section 4.3.1.

3.2.3 Batch Normalization Layer. Batch normalization is used to speed up network training and reduce the
sensitivity to network initialization. It makes the optimization problem easier. This allows a larger learning
rate, making the network training much faster. It also improves generalization of the neural network when the
training dataset contains data from different users. It first normalizes its inputs xi over a mini-batch for each
input channel. The normalized activation is

x̂i =
xi − µB√
σ 2
B + ϵ

(10)

where µB and σB are the mean and variance of the mini-batch [14]. In case of near-zero variances, a very small
number ϵ , which is 10−6 in SignFi, is used to improve numerical stability. The output of the batch normalization
layer is

yi = κx̂i + ρ, (11)

where κ is the scale factor, ρ is the offset, and x̂i is the normalized activation in equation (10) [14]. Both κ and ρ
are learnable parameters that are updated during training. To take full advantage of batch normalization, SignFi
shuffles the training data after each training epoch.

Fig. 9a shows the impact of batch normalization on recognition accuracy. The batch normalization layer helps
prevent overfitting when the network sees a new user’s data that is not shown in the training stage. Without batch
normalization, the neural network tends to overfit: the recognition accuracy is only 66% while training accuracy
is nearly 100%. With batch normalization but without shuffling the training data, the recognition accuracy only
improves by 1%. Batch normalization along with shuffling improves recognition accuracy by 22%.

3.2.4 ReLU Layer. The Rectified Linear Unit (ReLU) layer provides fast and effective training for deep neural
networks, since its activation function is easy to compute and optimize. It has been shown more effective than
traditional activations, such as logistic sigmoid and hyperbolic tangent, and is widely used in CNNs [10]. The
ReLU layer performs a threshold operation to each input, where any input value less than zero is set to zero, as
shown in equation (12). The size of the input is not changed after the ReLU layer.
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ReLU:

д(x) =

{
x if x ≥ 0
0 if x < 0

(12)

Leaky ReLU:

д(x) =

{
x if x ≥ 0
scale ∗ x if x < 0

(13)

Clipped ReLU:

д(x) =


ceilinд if x > ceilinд

x if 0 ≤ x ≤ ceilinд

0 if x < 0
(14)

There are some modified ReLUs, like leaky ReLU in equation (13) and clipped ReLU in equation (14), but they
have lower recognition accuracy than ReLU in our experiments. As shown in Fig. 9b, ReLU has 6% to 9% higher
accuracy than leaky ReLU and 6% to 14% higher accuracy than clipped ReLU. The possible reason is that leaky
ReLU introduces some noises when x < 0 and clipped ReLU loses some useful information when x > ceilinд.

3.2.5 Average-pooling Layer. The average-pooling layer reduces the number of connections to the following
layers by down-sampling. It returns the average of the inputs within a rectangular region. The pooling size of
SignFi is 3 × 3. Since there is no weight or bias, it does not provide any learning abilities. The major goal of
average-pooling is to reduce the number of parameters to be learned in the following layers. It also helps reduce
overfitting. Max-pooling returns the maximum, instead of the average, of selected inputs, but it has 10% lower
recognition accuracy than average-pooling, as shown in Fig. 9c.
The convolutional layer, ReLU layer, and average-pooling layer are usually combined into one unit. There

could be multiple of these units connecting with each other for large and complex datasets. We tried two and
three of these units in our experiments, but get much lower recognition accuracy than using one unit.
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%
)
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Fig. 10. Training and testing accuracy. SignFi w/o dropout
tends to overfit; there is a huge gap between training accu-
racy and testing accuracy.

3.2.6 Dropout Layer. The dropout layer is used to
prevent overfitting. It randomly replaces a portion of its
inputs with zero. In other words, it drops some randomly
selected inputs, with a given dropout probability, and
all the corresponding connections during training. As
shown in Fig. 9d, the dropout layer with dropout prob-
ability of 0.6 improves recognition accuracy from 59% to
88%. Fig. 10 shows an example of the training and testing
process for SignFi with and without dropout. SignFi with-
out dropout tends to overfit, since the training accuracy
reaches 100% while the testing accuracy remains around
50% and does not increase much after the 100th iteration.
Similar to the average-pooling layer, the dropout layer
does not provide any learning abilities.

3.2.7 Fully-connected Layer. The fully-connected
layer connects all of its neurons to the neurons in the
previous layer, i.e., the dropout layer. The effect is to
combine all the features learned by previous layers to
classify the input. The size of fully-connected layer is equal to the number of all possible classes, i.e., 276 in our
experiments.

3.2.8 Softmax Layer. A softmax layer and then a classification layer must follow the fully-connected layer for
classification problems. The softmax layer applies the softmax function to the last fully connected layer:

P(cr |x ,θ ) = д(a(x ,θ ))r =
ear (x,θ )∑k
j=1 e

aj (x,θ )
=

P(x ,θ |cr )P(cr )∑k
j=1 P(x ,θ |c j )P(c j )

, (15)
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Fig. 11. Floor plan and measurement settings of the lab and home environments.

where д(a)r = ear /
∑k

j=1 e
aj is the softmax function with 0 ≤ д(a)r ≤ 1 and

∑k
j=1 д(a)j = 1. Moreover, ar (x ,θ ) =

ln(P(x ,θ |cr )P(cr )), where P(x ,θ |cr ) is the conditional probability of the given class r , P(cr ) is the class prior
probability, and θ is the parameter vector.

3.2.9 Classification Layer. The classification output layer takes the values from the softmax function and
assigns each input to one of the k mutually exclusive classes using the cross entropy function

E(θ ) = −

n∑
i=1

k∑
j=1

ti j lnyj (xi ,θ ), (16)

where ti j represents that the ith sample belongs to the jth class, and θ is the parameter vector. yj (xi ,θ ) is the
output for the ith sample, which is the value from the softmax function. It represents the probability that the
network associates the ith input with class j, i.e., P(tj = 1|xi ).

4 EVALUATION
In this section, we first give the experiment setup, including measurement layout and displacements, data
collection procedure, and WiFi settings. We compare SignFi with existing classification algorithms in different
environments. Two performance metrics, recognition accuracy and time consumption of training and testing,
are evaluated. We also check the impact of convolution, signal processing, and sampling rate on the recognition
accuracy of SignFi. Finally, we run user independence test for 150 sign gestures performed by 5 different users.

4.1 Experiment Setup
We collect CSI traces for 276 sign gestures that are frequently used in daily life. CSI traces are measured in
both lab and home environments. Fig. 11 shows the floor plan and measurement settings for the lab and home
environments. The dimension of the lab and home is 13m×12m and 4.11m×3.86m, respectively. The lab has more
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Table 1. Number of Sign Words in Different Categories used in the Experiments

Common Animals Colors Descriptions Family Food Home People Questions School Time Others Total
16 15 12 32 31 54 17 13 6 26 31 23 276

Table 2. Data Collection Summary

User Age Weight/Height Data Collection Date (Number of Signs ×
Number of Repetitions)

Gesture
Duration

Number of
Instances

Lab

User 1 39 90kg/170cm Oct. 18, 2017 (25×10); Nov. 2, 2017 (125×10) 1s-2.5s 1,500
User 2 28 61kg/174cm Oct. 18, 2017 (25×10); Oct. 30, 2017 (125×10) 0.5s-1.5s 1,500
User 3 31 55kg/168cm Oct. 21, 2017 (25×10); Nov. 6, 2017 (125×10) 0.5s-1.5s 1,500
User 4 26 65kg/180cm Oct. 23, 2017 (25×10); Oct. 31, 2017 (125×10) 1s-2.5s 1,500
User 5a 29 68kg/171cm Jul. 18, 2017 (166×20); Jul. 19, 2017 (110×20) 0.5s-1.5s 5,520

Home User 5 29 68kg/171cm
Jun. 8, 2017 (32×10); Jun. 25, 2017 (68×10);
Jul. 4, 2017 (100×10); Jul. 11, 2017 (25×10);

Jul. 12, 2017 (51×10)
0.5s-1.5s 2,760

a Compared with user 1 to 4, user 5 has different experiment settings, such as laptop displacement, surrounding
objects, desk and chair arrangements, etc., even though they are in the same lab environment. The data
collection time of user 5 is 3-4 months earlier than that of user 1 to 4, so it is hard to recover the same settings.

surrounding objects, leading to a more complex multi-path environment than the home. The distance between
the AP and STA is 230cm and 130cm, respectively, for the lab and home environment. For the home environment,
the transmit antenna array is orthogonal to the direction from the AP to STA. For the lab environment, the
angle between the transmit antenna array and the direct path is about 40 degrees. The major differences of these
two environments are: (1) dimension of the room, (2) distance between the AP and STA, (3) angle between the
transmit antenna array and the direct path, and (4) multi-path environments.
Table 1 summaries the 276 sign words used in our experiments divided into different categories. We select

the 253 basic sign words from [35]. These sign words are the most important words for ASL beginners and are
frequently used in daily life. Some sign words have different gestures; we only select one of the gestures that
have the same meaning. We do not select compound signs that are composed of more than three signs. For
comparison, we also run experiments on 25 sign gestures from [21]. Two sign words, "phone" and "kitchen", are
already included in the 253 basic sign gestures. In total, 276 sign gestures are tested in our experiments.

We collect CSI traces from 5 male users who do not know how to sign before the experiments. Table 2 shows
the summary of data collection. Different users may have different gesture durations and slightly different
hand/finger movements for the same sign word. For user 1 to 4, we collect CSI traces only in the lab environment.
Each of the 4 users makes 150 sign gestures with each gesture repeated for 10 times. There are 6,000 gesture
instances for these 4 users. For user 5, we collect CSI traces in both the lab and home environments. Each sign
gesture has 20 instances for the lab environment and 10 instances for the home environment. In total, there are
8,280 gesture instances for user 5. CSI traces, labels, and videos of the 276 sign words are available for download2.
Fig. 12 shows the experiment setup in the lab environment. During the experiments, each user first watches

video on [35] to learn how to sign for one word. As long as the user feels comfortable to conduct the sign gesture
smoothly, we begin to collect CSI traces for this sign gesture. The user repeats the sign gesture in front of a WiFi
Station (STA), which exchanges packets with a nearby WiFi Access Point (AP). The user begins to make the
2https://yongsen.github.io/SignFi/
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WiFi Station WiFi Access Point

Fig. 12. Experiment setup for the lab environment.

Table 3. Classification Algorithm and CSI Size for each
Label in Fig. 13, 14, and 15

Label Algorithm CSI Size
kNN+DTW+5subc kNN+DTW (1,1,5)

kNN+DTW+5subc+MIMO kNN+DTW (1,3,5)
kNN+DTW+30subc kNN+DTW (1,1,30)

kNN+DTW+30subc+MIMO kNN+DTW (1,3,30)
CNN+5subc CNN (1,1,5)
CNN+30subc CNN (1,1,30)

SignFi CNN (1,3,30)

first sign as seeing "Sign Starts ... 1" on the screen of the STA. At the same time, the AP sends 802.11n packets
periodically to the STA. The STA collects CSI measurements while the person is making sign gestures. The user
repeats the same sign gesture until the screen of the STA shows "Sign Starts ... [n]". Here n could be 11 or 21
depending on whether 10 or 20 gesture instances are collected. We repeat this procedure, i.e., watching the video,
repeating the sign gesture, and collecting CSI traces, for all the sign gestures.
The WiFi AP and STA are two laptops with Intel WiFi Link 5300 installed. CSI measurements are collected

using openrf [16], which is modified based on the 802.11n CSI tool [12]. The WiFi AP and STA operate at 5GHz,
and the channel width is 20MHz. Note that the 802.11n CSI tool only provides CSI values of 30 sub-carriers even
though a 20MHz WiFi channel has 52 sub-carriers. The AP has 3 external antennas, and the STA has 1 internal
antenna. The transmitting power is fixed at 15dBm. All experiments are conducted in the presence of other WiFi
signals. As shown in Fig. 12, the user is not on the direct path between the STA and AP. This is a normal case in
real life. It also makes sign gesture recognition much harder, since the strength of signals reflected by the person
is much lower than that of the direct path signals. Training and testing are performed by a Linux desktop with an
8-core i7-4790 CPU at 3.60GHz and 15.6GB of RAM.

4.2 Comparing SignFi with Existing Methods
We compare SignFi with the classification algorithm kNN with DTW used in [18, 21]. The input signals used
in [21] are the Received Signal Strength (RSS) and the amplitude and phase of 5 sub-carriers with the least average
cross-correlation. We feed the same input signals to kNN with DTW. CSI traces of different transmit antennas
provides different results for kNN with DTW. We select the transmit antenna that has the highest recognition
accuracy. We also use CSI traces from all the transmit antennas and all the 30 sub-carriers as input signals. To
check the impact of input signals on CNN, we also run CNN using CSI traces from 5 or 30 sub-carriers. Table 3
gives a summary of the classification algorithm and CSI size for each label used in our comparison. In this section,
we only use the data of user 5. We run 5-fold cross validation using 5,520 instances from the lab, 2,760 instances
from the home, and 8,280 instances from the lap+home environment.

4.2.1 Recognition Accuracy. Recognition accuracy is defined as the number of correctly classified instances
divided by the number of all testing instances. Fig. 13 shows recognition accuracy results in different environments.
SignFi provides high recognition accuracy for all the datasets. For the 276 sign gestures, the average recognition
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Fig. 13. Recognition accuracy in different environments.

accuracy of SignFi is 98.01%, 98.91%, and 94.81% for the lab, home, and lap+home environment, respectively. With
only 5 sub-carriers of non-MIMO CSI traces, CNN has average accuracy of 80.74%, 93.37%, and 83.00% for the lab,
home, and lab+home environment, respectively. Using the same input, with either 5 or 30 sub-carriers of non-
MIMO CSI traces, CNN has much higher accuracy than kNN with DTW in the lab and lab+home environments.
For the lab+home environment, SignFi still has 94.81% accuracy even though the lab and home have very different
experiment settings.
For the 25 sign gestures, all classification algorithms with different input signals have over 95% recognition

accuracy for all the three environment settings. For the 276 sign gestures, the accuracy of kNN with DTW
decreases dramatically for the lab and lap+home environments. For the lab environment, the average recognition
accuracy is only 68.33% and 70.20% for kNN with DTW using CSI traces of 5 and 30 sub-carriers, respectively.
Adding MIMO CSI measurements further decreases the average accuracy to 51.93% and 48.30%. The major reason
is that the lab has a complex multi-path environment, which heavily impacts MIMO. Another reason is that the
distance between the WiFi AP and STA in the lab is longer than that of the home environment, so the strength
of reflected signals is lower. This leads to more noise signals for the lab environment. The average accuracy of
kNN with DTW is increased to 82% for the home environment. Using both MIMO and 30 sub-carriers of CSI
traces, the accuracy of kNN with DTW is improved to 88.90%. The reason is that the home environment has less
multi-path signals and shorter distance between the AP and STA. Even though kNN with DTW provides 88.90%
accuracy using MIMO and 30 sub-carriers of CSI traces, it takes extremely long time to finish the testing. The
time consumption of training and testing is shown later in the next subsection.

To get a better understanding about sign gesture recognition, we break down the 276 sign gestures into different
categories and check the recognition accuracy in each category, as shown in Fig. 14. All the evaluation results in
Fig. 14 are from the lab+home environment. The number of sign gestures in each group of each category for
the 276 sign gestures is shown in Fig. 3 in Section 2. All the sign gestures in the same group of each category
has similar patterns. The evaluation results show that: (1) whether the classification algorithms can distinguish
similar sign gestures; (2) what kinds of sign gestures are hard to recognize. SignFi has high accuracy for all
groups in each category. This means that even for sign gestures with very similar patterns, SignFi is still able to
distinguish them from each other. For sign types in Fig. 14a and path movement types in Fig. 14b, there is no
significant difference for each group. For Fig. 14c, kNN with DTW has the lowest accuracy when there are three
moving/foregrounded fingers, "mrp" and "imr". For general hand locations in Fig. 14d, sign gestures with the
dominate hand near the non-dominate hand are the hardest to recognize, for both SignFi and kNN with DTW.
For general hand location of "Hand" and specific hand location of "Neck", the recognition accuracy of kNN with
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Fig. 14. Recognition accuracy in different categories for the lab+home environment (8,280 gesture instances for 276 signs).

DTW is only 40% and 51% using 5 and 30 sub-carriers’ CSI, respectively. For specific hand location of "HeadTop",
kNN with DTW has comparable accuracy as SignFi, as shown in Fig. 14e. For all other groups in each category,
kNN with DTW has much lower accuracy than SignFi.

4.2.2 Time Consumption of Training and Testing. Fig. 15 shows the time consumption of training and testing
of different classification algorithms with different CSI inputs. The testing time of SignFi is much shorter than
that of kNN with DTW. For kNN with DTW, the testing time of each sign gesture is 33.36ms using 5 sub-carriers
of non-MIMO CSI traces. It proliferates to 5,147.20ms if the input has 30 sub-carriers of MIMO CSI traces. The
testing time of SignFi is 0.62ms. However, SignFi does have longer training time than kNN with DTW. The
maximum training time for kNN with DTW is only 0.046ms. SignFi takes 8.28ms for CSI processing and CNN
training for each sign gesture. It takes 0.05ms and 2.12ms for CNN to finish training using 5 and 30 sub-carriers
of non-MIMO CSI traces, respectively. Since training usually can be performed offline and testing must be done
in real-time, it is more important to reduce the testing time. Therefore, SignFi is more practical than kNN with
DTW to be implemented in real-time.

4.3 More Discussions on SignFi
In this section, we investigate the impact of convolution, signal processing, and sampling rate on the recognition
accuracy of SignFi. We run 5-fold cross validation using the data of 276 sign gestures from user 5.
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Fig. 16. Impact of convolution, signal processing, and sampling time
interval of SignFi.

4.3.1 Impact of Convolution. The reason we use CNN as the classification algorithm is that CNN has higher
recognition accuracy than other neural networks that do not have the convolutional layer. As shown in Fig. 16a, the
recognition accuracy of SignFi without convolution is 84.64%, 81.70%, and 70.34% for the lab, home, and lab+home
environment, respectively. For the lab+home environment, the accuracy improvement due to convolution is
24.47%, which is the highest among all the three environments. The evaluation results show that the convolution
layer has a significant impact on the recognition accuracy of SignFi.

4.3.2 Impact of Signal Processing. We also check the impact of SignFi signal processing that removes noises
from raw CSI measurements, as shown in Fig. 16. Without SignFi signal processing, the average recognition
accuracy is 95.72%, 93.98%, and 92.21% for the lab, home, and lab+home environment, respectively. SignFi signal
processing has the highest accuracy improvement, which is 4.93%, for the lab environment. The reason is that
SignFi signal processing only removes random phase offsets. It does not filter out other noise signals. The layout,
surrounding environment, and displacement of the AP and STA of the lab and home are very different, leading to
very different noise signals.

4.3.3 Impact of Sampling Rate. Another import factor that influences the recognition accuracy of SignFi is
the CSI sampling rate. For all the previous evaluation results, the WiFi STA measures CSI about every 5ms. We
change the sampling time interval for the CSI dataset collected from the lab environment, and run SignFi with
5-fold cross validation again. The evaluation results are shown in Fig. 16b. When the sampling time interval
increases from 5ms to 10ms, the average recognition accuracy decreases from 98.01% to 95.72%. SignFi still has
high recognition accuracy using 10ms of sampling interval, considering there are 5,520 instances of 276 sign
gestures. When the sampling time interval increases to 20ms, the average recognition accuracy decreases to
91.12%. Based on these results, the sampling time interval should be no larger than 20ms to get high recognition
accuracy. For sampling interval of 40ms and 80ms, the average accuracy further decreases to 87.05% and 84.17%.

4.4 User Independence Test
This section gives user independence test using CSI traces of 150 sign gestures from 5 different users. There are
7,500 gesture instances in total. We run self test, 5-fold cross validation, and leave-one-subject-out validation
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(b) Cross Validation for User 1 to 4
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(c) Cross Validation for User 1 to 5

Fig. 17. Recognition accuracy of user independence test.

using CSI traces from all the 5 users. For self test, wherein training and testing only include CSI traces from the
same user, the recognition accuracy for each user is above 98%, as shown in Fig. 17a. In Section 4.4.1, we use
CSI traces of just user 1 to 4 to separate the impact of user 5. As shown in Table 2, CSI traces of user 5 were
collected three to four months before user 1 to 4. We were unable to use the exact same experiment settings, such
as laptop displacement, surrounding objects, desk and chair arrangements, etc., for user 1 to 4 and user 5. User 1
to 4 have almost the same experiment settings, which are different from that of user 5. We also show the impact
of different data collection dates and settings by including CSI traces of user 5 in Section 4.4.2.

4.4.1 Users with Similar Data Collection Dates and Settings. We first run 5-fold cross validation using CSI
traces of user 1 to 4. In other words, CSI traces from different users are mixed together and randomly divided
into training and testing datasets. The average recognition accuracy is 96.68%, as shown in Fig. 17b. This means
that SignFi is robust to different users, considering these users have different body sizes and gesture durations.
For leave-one-subject-out cross validation, the recognition accuracy is in the range of 73.73% and 79.80%, and
the average recognition accuracy is 76.96%. Comparing with 5-fold cross validation, the recognition accuracy of
leave-one-subject-out cross validation decreases by 20%.

4.4.2 Users with Different Data Collection Dates and Settings. When CSI traces of user 5 are included, the
recognition accuracy of 5-fold cross validation decreases to 86.66%, as shown in Fig. 17c. This means that
experiment settings have a significant impact on SignFi. For leave-one-subject-out validation, the average accuracy
drops to 67.36%. The accuracy of user 1 to 3 decreases by 13.2%, 4%, and 4.7%, respectively. The recognition
accuracy of user 5 is only 49.3%. This is not adequate for practical usage, but is still very good compared to a
random algorithm, which only has 1/150=0.06% accuracy. From the evaluation results, we can see that different
users and different experiment settings have a great impact on SignFi. When there is a new user, we may need
the user first conduct some sign gestures to train the neural network to get a good recognition accuracy.

5 RELATED WORK
There are many sign language recognition systems using different signals. We give a comparison of different sign
language recognition technologies in Table 4. Since sign language recognition needs gesture recognition, we give
a summary of gesture recognition technologies in Table 5.
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Table 4. Comparison of Sign Language Recognition Technologies

Comparison
Technologies

Signal/Device
Used Intrusive? Granularity Gesture

Type
Recognition
Algorithma

Number of Sign
Gestures

Recognition
Accuracy

Zafrulla2011 [47] Kinect, gloves
and sensors Yes Hand/Finger Static HMM 26

51.5% (seated);
76.12% (standing)

Sun2015 [36]
Kinect No Hand/Finger Dynamic

SVM 73 86.0%
Pigou2015 [28] CNN 20 91.7%
Huang2015 [13] CNN 25 94.2%

Chuan2014 [6]

Leap Motion No Finger Static

kNN; SVM 26 72.78% (kNN);
79.83% (SVM)

Quesada2015 [30] SVM 10 79.17%
Funasaka2015 [8] SVM 26 82.71%
Mapari2016 [20] MLP 26 90%
Naglot2016 [24] MLP+BP 26 96.15%
DeepASL [7] Leap Motion No Hand/Finger Dynamic RNN 56 94.5%

Savur2015 [32] sEMG Sensor Yes Finger Static SVM 26 91% (offline);
82.3% (real-time)

WiSign [33]
WiFi

(2.4/5 GHz) No

Hand Dynamic SVM 5 93.8%
WiFinger* [18] Finger Static kNN+DTW 9 90.4%

Melgarejo2014 [21] Hand/Finger Dynamic kNN+DTW 25 (wheelchair);
14 (car)

92% (wheelchair);
84% (car)

SignFi (Our
design) WiFi (5 GHz) No Head/Arm/

Hand/Finger Dynamic CNN 276
98% (lab); 98%
(home); 94%
(lab+home)

a HMM: Hidden Markov Model; SVM: Support Vector Machine; CNN: Convolutional Neural Network; kNN: k Nearest Neighbor;
MLP: Multi-Layer Perceptron; BP: Back-Propagation; RNN: Recurrent Neural Network; DTW: Dynamic Time Warping

5.1 Sign Language Recognition
A brief summary of sign language recognition technologies is given in Table 4. There are many vision-based sign
language recognition systems using cameras [34] or the Kinect sensor [13, 28, 36, 47]. For example, the SignAll
prototype [34] uses 3 cameras and 1 depth sensor to track hand gestures. A Kinect sensor, along with color gloves
and accelerometers, are used to recognize 26 alphabet letters in [47]. Only the Kinect sensor is used in [13, 28, 36]
to recognize sign gestures. Paper [36] is able to recognize 73 basic signs with 86.0% accuracy. These vision-based
systems are subject to lighting conditions. Recently, many papers use the Leap Motion sensor for sign language
recognition [6, 8, 20, 23, 24, 30, 36, 47]. As shown in Table 4, these systems are tested on signs for numbers and
alphabet letters. These signs only involve simple finger postures. Leap Motion-based systems can only recognize
finger gestures, and the hands must be in a very small region near the sensor. Some sign recognition systems use
sensors, like motion sensors in SignAloud [26] and surface Electromyography (sEMG) sensors in [32], but they
are intrusive and require sensors to be attached on fingers.
WiFi signals are used to recognize sign gestures in a non-intrusive way in [18, 21, 33]. But they can only

recognize simple ASL gestures: 5 hand gestures in [33], 9 digits finger postures in [18], and 25 hand/finger gestures
in [21]. SignFi also uses WiFi signals, and it is able to recognize 276 very complex sign gestures with 97.03%
accuracy. For all the existing systems in Table 4, only [36] is evaluated on a relatively large number of complex
sign gestures. It is able to recognize 73 sign gestures with 86.0% accuracy. These 73 sign gestures do not include
signs that look similar in vision. SignFi is able to distinguish more complex sign gestures that have very similar
hand/arm/finger movements, and with higher accuracy than the Kinect-based solution in [36].
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Table 5. Comparison of Gesture Recognition Technologies

Comparison
Technologies

Signal/Device
Used Intrusive? Granularity Number of

Gesturesa Recognition Accuracy

E-Gesture [27]

Motion Sensor Yes

Hand 8 94.6%
Watanabe2016 [43] Hand 15 79%
Serendipity [44] Finger 5 87%
Xu2015 [45] Arm/Hand/Finger 37 98%
FingerPad [3]

Magnetic Sensor Yes Finger N/A N/A (finger tracking)uTrack [4]
Finexus [5]

Savur2015 [32] sEMG Sensor Yes Finger 26 91% (offline); 82.3%
(real-time)

SoundWave [11]

Audio
(18-22 KHz) No

Hand 5 94.7% (home); 94.3% (cafe)
AudioGest [31] Hand 6 94.15%
FingerIO [25] Finger N/A N/A (finger tracking)
Strata [46] Finger N/A N/A (finger tracking)
LLAP [42] Hand/Finger N/A N/A (hand/finger tracking)

SlideSwipe [49] GSM (850 MHz) No Hand 14 87.2%

AllSee [15] TV (725 MHz);
RFID (915 MHz) No Hand/Finger 8 94.4% (TV); 97% (RFID)

RF-IDraw[41] RFID (922 MHz) Yes Finger N/A N/A (finger tracking)
WiSee [29]

WiFi (2.4/5 GHz) No

Body/Hand/Leg 9 94%
WiDraw [37] Hand N/A N/A (hand tracking)
WiGest [1] Hand 7 87.5% (1 AP); 96% (3 APs)
WiAG [40] Hand 6 91.4%
WiSign [33] Hand 5 93.8%

WiFinger** [38] Finger 8 93%
Mudra [48] Finger 9 96%

WiFinger* [18] Finger 9 90.4%

Melgarejo2014 [21] Hand/Finger 25 (wheelchair);
14 (car)

92% (wheelchair);
84% (car)

Molchanov2015 [22] FMCW (24 GHz) No Finger 10 94.1%

Soli [19] Millimeter Wave
(60 GHz) No Finger 4 92.1%

SignFi (Our design) WiFi (5 GHz) No Head/Arm/
Hand/Finger 276 98% (lab); 98% (home);

94% (lab+home)
a Only WiSign [33], WiFinger* [18], Melgarejo2014 [21], and SignFi (our design) evaluate on sign language gestures.

5.2 Gesture Recognition
One import part of sign language recognition is gesture recognition. Table 5 gives a comparison of gesture
recognition technologies using different signals. Motion sensors, like accelerometers used in [27, 43], are widely
used for hand gesture recognition. Some papers use accelerometers and gyroscopes to recognize finger gestures [44,
45]. A smartwatch with accelerometers and gyroscopes is able to measure tendons movements and identify 37 (13
finger, 14 hand and 10 arm) gestures with 98% accuracy [45]. However, finger gestures must have the wrist and
arm affixed to the chair arm while hand gestures must have the arm affixed. So finger gestures involve only finger
movements, and hand gestures involve only wrist movements. This is not realistic for sign gesture recognition
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wherein a sign gesture may contain all hand, arm and finger movements. Magnetic sensors are used in [3–5] and
sEMG sensors are used in [32] to recognize finger gestures, but these methods require sensors attached to the
fingers of the signer. Sensor-based gesture recognition systems are intrusive.
Many gesture recognition systems use audio or wireless signals as the input. SoundWave [11] and Audio-

Gest [31] use audio signals to recognize simple hand gestures with up to 95% accuracy. Audio signals are
used in [25, 42, 46] to track 2-D finger movements with tracking accuracy of 8mm, 1cm, and 4.6mm, respec-
tively. For audio-based gesture recognition, the distance between the device and the hand/finger must be very
short (usually less than 20cm). There are many gesture recognition systems using wireless signals, including
Global System for Mobile communications (GSM) [49], TV [15], Radio-Frequency Identification (RFID) [15, 41],
WiFi [1, 18, 21, 29, 33, 37, 38, 40, 48], Frequency Modulated Continuous Wave (FMCW) [22], and millimeter
wave [19]. Sign language recognition needs to distinguish finger-level gestures/postures, which are not tested by
SlideSwipe [49], WiSee [29], WiDraw [37], WiGest [1], or WiAG [40]. Although other wireless-based gesture
recognition systems can detect finger-level gestures, none of them are tested on more than 25 gestures. SignFi is
able to recognize 276 sign gestures with above 94% accuracy using WiFi signals.

6 CONCLUSION
In this paper, we propose a sign language recognition system, SignFi, to recognize frequently used sign gestures
using WiFi signals. SignFi measures Channel State Information (CSI) by WiFi packets and uses a 9-layer Convo-
lutional Neural Network (CNN) as the classification algorithm. The average recognition accuracy of SignFi is
98.01%, 98.91%, and 94.81% for the lab, home, and lab+home environment, respectively. For 7,500 instances of 150
sign gestures performed by 5 different users, the recognition accuracy of SignFi is 86.66%.
We have shown that SignFi is robust for two environments and five users. There are many other factors that

may influence the recognition performance. For example, the distance between the person and the AP/STA could
be different. The direction and orientation of the person with respect to the AP/STA could also change. There
could be multiple persons or other moving objects around. The person or other objects could block the direct
path from the AP to STA. We plan to collect more CSI traces and run tests considering these factors. Another
import task is sentence-level sign language recognition. In this paper, CSI measurements are manually segmented
for each sign gesture. It introduces many challenges for sentence-level sign language recognition when CSI traces
are not manually segmented. We leave automatic time segmentation to future work. Recurrent Neural Networks
(RNN) with Long-Short-Term-Memory (LSTM) could help for automatic sentence-level sign language recognition.
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