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Adaptive Deep Feature Fusion for Continuous
Authentication with Data Augmentation

Yantao Li, Li Liu, Huafeng Qin, Shaojiang Deng, Mounim A. El-Yacoubi, and Gang Zhou

Abstract—Mobile devices are becoming increasingly popular and are playing significant roles in our daily lives. Insufficient security
and weak protection mechanisms, however, cause serious privacy leakage of the unattended devices. To fully protect mobile device
privacy, we propose ADFFDA, a novel mobile continuous authentication system using an Adaptive Deep Feature Fusion scheme for
effective feature representation, and a transformer-based GAN for Data Augmentation, by leveraging smartphone built-in sensors of the
accelerometer, gyroscope and magnetometer. Given the normalized sensor data, ADFFDA utilizes the transformer-based GAN
consisting of a transformer-based generator and a CNN-based discriminator to augment the training data for CNN training. With the
augmented data and the especially designed CNN based on the ghost module and ghost bottleneck, ADFFDA extracts deep features
from the three sensors by the trained CNN, and exploits an adaptive-weighted concatenation method to adaptively fuse the
CNN-extracted features. Based on the fused features, ADFFDA authenticates users by using the one-class SVM (OC-SVM) classifier.
We evaluate the authentication performance of ADFFDA in terms of the efficiency of the transformer-based GAN, GAN-based data
augmentation, CNN architecture, adaptive-weighted feature fusion, and OC-SVM classifier. The experimental results show that
ADFFDA obtains the best authentication performance w.r.t representative approaches, by achieving a mean equal error rate of 0.01%.

Index Terms—Continuous authentication, deep feature fusion, adaptive weights, data augmentation, CNN, OC-SVM

1 INTRODUCTION

N the digital age of inter-connectivity, mobile devices,
Isuch as smartphones, smartwatches, and tablets, have
become increasingly popular for their mobility and con-
venience. With the rapid increase of memory and com-
putational sources, these mobile devices play significant
roles in our daily lives as they allow people to save mul-
timedia data, perform social or communication activities,
and interact with user-related IoT devices. More and more
private and sensitive information, as a result, is stored on
or transmitted between mobile devices. For these reasons,
it becomes imperative to devise smart technologies to pre-
vent privacy leakage from people’s mobile devices. Due
to the importance of the privacy protection, primary secu-
rity methods, namely knowledge-based and physiological
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biometrics-based mechanisms, have been widely applied in
mobile devices. As the knowledge-based mechanisms, such
as PINs and graphical patterns, highly depend on users’
knowledge, they suffer from several adversarial attacks,
such as guessing [1] and eye glimpsing [2]. On the other
side, since the physiological biometrics-based mechanisms
require physiological traits as input, such as face and fin-
gerprints, they suffer from direct and indirect attacks [3],
chief among them, replaying [4] and spoofing [5]. Therefore,
stronger protection mechanisms are required for informa-
tion security on mobile devices.

The continuous authentication is an implicit process of
identifying users that relies on capturing their behavioral
attributes by leveraging the resources and sensors of mobile
devices [6]. The continuous authentication mechanisms can
frequently authenticate mobile device users via behavioral
biometrics-based approaches, based on unique behavioral
patterns of users, such as touch gestures [7], [8], [9], gaits
[10], [11], [12], heartbeats [13], [14], and chest motion [15].
These behavioral biometrics-based systems help to secure
mobile banking, shopping, remote meeting, and so on,
because these applications require to continuously validate
the user’s identity during an entire session. In this respect,
some works utilizing deep learning methods to extract deep
features have achieved a relatively high accuracy [16], [17],
[18]. These works, however, face the challenge of insuffi-
cient training data. Although the authors in [16] provide
five data augmentation approaches, i.e., permutation, sam-
pling, scaling, cropping, and jittering (widely used in image
augmentation) for sensor data augmentation and achieve
approximately 4.66% median EER with a dataset size of 200,
these geometric transformation-based data augmentation
techniques are difficult to capture the deep information in-
side the real data. The created data lack, therefore, diversity
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Fig. 1: Architecture of ADFFDA

related to the high dependence characterizing the original
data [19], [20]. Generative adversarial networks (GANSs)
using CNN as backbones, namely, CNN-based GANSs, can
learn information about data probability distribution and
generate realistic-like data from the real data distribution.
They have been exploited in computer vision tasks, such
as image synthesis [21], image enhancement [22] and im-
age editing [23], to improve the training of deep learning
models. Although CNN-based GAN data augmentation ap-
proaches have been widely used in the image processing
field, the extracted features are local for each layer and
have the global receptive field only in the last few layers
causing the loss of feature resolution and fine details. For
example, Li ef al. use a conditional Wasserstein generative
adversarial network consisting of a CNN-based generator
and a CNN-based discriminator for data augmentation, re-
sulting in a partial improvement of authentication accuracy
[24]. Moreover, existing CNN-based GAN data augmenta-
tion approaches face the challenge of the way they can be
adapted for time-series data augmentation. The emergence
of the transformers address these limitations thanks to their
strong representation capabilities and their general and
simple architecture that is suitable for smart devices [25].
On the other hand, since a single biometric modality suffers
from significant limitations associated with the inherent
variability of biometric traits, due to noise, and poor data
quality, the combination of multiple biometric sources is a
known strategy to improve identification accuracy. In this
regard, some works dedicated to feature fusion strategies
have managed to improve accuracy [26], [27], but they
are facing the challenge of inefficient feature combination
representation. For instance, Zhang et al. utilize deep feature
fusion strategy of a weighted concatenation to fuse iris and
periocular modalities for mobile identification enhancement
[29]. Concretely, this work and other similar ones are usually
based on fixed weight combination schemes, such as direct
concatenation [28], and weighted concatenation [29], which
hinder their full improvement potential. Efficient feature
fusion strategies for continuous authentication with high
feature combination are therefore another challenge to be
addressed.

In order to tackle the aforementioned two challenges
of insufficient training data and inefficient feature combi-
nation, we are among the first to explore a transformer-
based GAN to generate additional data for CNN training
and design an adaptive-weighted concatenation method for
CNN-extracted feature fusion. In this paper, we propose
ADFFDA, a novel and mobile continuous authentication
system using an Adaptive Deep Feature Fusion for effec-

tive feature combination and a transformer-based GAN for
Data Augmentation, which leverages smartphone built-in
sensors, i.e. accelerometer, gyroscope and magnetometer,
to capture users’ behavioral patterns. Specifically, the op-
eration of ADFFDA is composed of the enrollment phase
and the continuous authentication phase. In the enrollment
phase, ADFFDA utilizes a transformer-based GAN to aug-
ment the normalized training data for the designed CNN
training, extracts CNN-based features, then implements a
new adaptive-weighted concatenation scheme to fuse deep
features, and finally trains the one-class SVM (OC-SVM),
thereby learning to discriminate a legitimate user from an
impostor. In the continuous authentication phase, with the
trained CNN, feature fusion model, and OC-SVM classifier,
ADFFDA continuously authenticates the current user as the
legitimate user or an impostor by relying on the testing
data from the accelerometer, gyroscope and magnetometer,
thereby allowing the owner to operate the smartphone as
long as he/she is authenticated.

The main contributions of this work can be summarized
as follows:

e We propose ADFFDA, a novel and mobile contin-
uous authentication system using an adaptive deep
feature fusion for effective feature combination, and
a transformer-based GAN for data augmentation.
ADFFDA comprises five modules: data collection,
data augmentation, deep feature extraction, deep
feature fusion, and authentication with OC-SVM.

e We are among the first to explore a transformer-
based GAN composed of a transformer-based gen-
erator and a CNN-based discriminator in order to
generate additional training data for CNN training.
Based on the ghost module and ghost bottleneck,
we especially design a CNN to learn discriminative
features for adaptive deep feature fusion.

e We design an adaptive-weighted concatenation
method for CNN-extracted feature fusion, which
adaptively assigns weights to the three features as-
sociated with the accelerometer, gyroscope and mag-
netometer, in order to ensure feature representation.

e We conduct extensive experiments to evaluate the
authentication performance of ADFFDA. The experi-
mental results indicate that ADFFDA attains the best
authentication performance, when comparing with
representative state-of-the-art approaches, reaching a
mean EER of 0.01% .

The rest of this work is organized as follows: Section 2
provides ADFFDA including the system model, adversary
model, and overview. In Section 3, we describe our methods
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of collecting and preprocessing the sensor data, respectively.
Section 4 details the transformer-based GAN for CNN train-
ing data augmentation. In Section 5, we elaborate on how to
extract deep features by the designed CNN. Section 6 de-
scribes an adaptive deep feature fusion strategy for effective
feature representation. In Section 7, we introduce the OC-
SVM classifier for the authentication. Section 8 evaluates the
authentication performance of ADFFDA. In Section 9, we
review the existing literature about behavioral biometrics,
data augmentation, and feature fusion in authentication
systems. Section 10 concludes this work.

2 ADFFDA

In this section, we begin with the system model, then de-
scribe the adversary model, and finally present the overview
of ADFFDA.

2.1 System Model

We consider a mobile continuous authentication system that
utilizes users’ behavioral patterns extracted from smart-
phone built-in sensors, i.e., the accelerometer, gyroscope and
magnetometer, to continuously authenticate the user as a
legitimate user or an imposer once the user starts operating
smartphones (e.g., finger touch, gesture, and wrist motion).
The authentication process of our system typically consists
of two phases: the enrollment phase for data augmenta-
tion and model training, and the continuous authentication
phase for user authentication with the trained models. In
the enrollment phase, user data are first augmented and
then utilized to train a feature extractor. The trained fea-
ture extractor extracts deep features, which are then fused
by a feature fusion strategy. Based on the trained feature
extractor and fusion model, the legitimate user registers
his/her profile through interaction on smartphones, and a
classifier is then trained. In the continuous authentication
phase, sensors start collecting real-time behavioral data,
when users operate the smartphone integrating the trained
feature extractor, fusion model, and classifier. Deep features
from the collected data are extracted by the extractor and
then are fused by the fusion model. The trained classifier
identifies the user as a legitimate user or an impostor. For
example, the system can identify a user when he/she texts
a message on an unlocked smartphone as a legitimate user
or impostor. If the user is authenticated as an impostor, the
smartphone will be immediately locked; otherwise, it will
allow the legitimate user to continue using the phone.

2.2 Adversary Model

Continuous authentication is an implicit process of val-
idating a legitimate user based on capturing behavioral
patterns by leveraging resources and built-in sensors on
mobile devices. We consider a user spoofing attack against
such a continuous authentication system, namely a mimic
attack. In this attack, an adversary first observes the way a
legitimate user conducts gestures/touches on his/her phone
to pass the authentication, and then practices to mimic the
user’s behaviors for conducting the attack.

2.3 ADFFDA Overview

The key idea of ADFFDA is to continuously authenti-
cate smartphone users using a transformer-based GAN for
data augmentation and an adaptive-weighted concatenation
method for CNN-extracted feature fusion. Fig. 1 describes
the system architecture of ADFFDA, which is composed
of two phases: the enrollment phase and the continuous
authentication phase. Concretely, in the enrollment phase,
ADFFDA learns a profile of a legitimate user by utilizing
the training data to train the transformer-based GAN, CNN,
feature fusion model, and the OC-SVM classifier. After the
legitimate user’s profile is learned, ADFFDA enters the con-
tinuous authentication phase to identify users by exploiting
the trained CNN, feature fusion model, and the classifier on
testing data.

As illustrated in Fig. 1, ADFFDA consists of five mod-
ules: data collection, data augmentation, deep feature ex-
traction, deep feature fusion, and authentication with OC-
SVM. Specifically, the data collection module exploits three
smartphone built-in sensors, i.e. the accelerometer, the gyro-
scope, and the magnetometer, to sample users’ fine-grained
and coarse-grained behavioral data. The data augmentation
module is composed of data preprocesing and transformer
GAN-based augmentation. It first normalizes the three
sensor data respectively, and then utilizes a transformer-
based GAN consisting of a transformer-based generator
and a CNN-based discriminator to create additional train-
ing data for deep feature extraction. Then, the feature ex-
traction module uses a CNN based on the ghost module
and ghost bottleneck to learn discriminative deep features
for the three sensors, respectively. With the three CNN-
extracted feature vectors, the feature fusion module exploits
an adaptive-weighted concatenation method to adaptively
assign weights to the three feature vectors, and then concate-
nates the three weighted vectors to one fused feature vector.
Based on the adaptively concatenated deep features, the OC-
SVM classifier is trained to learn the legitimate user’s profile
based on the training data. With the trained OC-SVM and
CNN, the authentication module identifies, on the testing
data, the current user as a legitimate user (the owner) or
an imposter. ADFFDA allows the continuous usage of the
smartphone if the user is classified as a legitimate user;
otherwise, it requires the user’s initial identification.

3 DATA COLLECTION AND PREPROCESSING

In this section, we first explain how to collect the data for
ADFFDA and then describe how to preprocess the collected
data for the transformer-based GAN and CNN training.

3.1 Data Collection

In ADFFDA, the sensor data of an operation are collected by
using a mobile smartphone equipped with the accelerome-
ter, gyroscope and magnetometer sensors. The accelerome-
ter and gyroscope motion sensors capture a user’s coarse-
grained patterns such as arm movements and gaits, and
fine-grained motion patterns such as touch gestures, re-
spectively. The magnetometer position sensor determines
the smartphone’s physical position in the real frame of
reference, which is leveraged for data calibration to acquire
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more precise motion information. Each collected sample can
be represented as (T, Ya, 2as Tgs Yg» Zgs Tms Yms Zm) . € R,
where 2, y, z represent the three axes of a sensor, and a, g, m
indicate the three accelerometer, gyroscope, and magne-
tometer sensors, respectively.

3.2 Data Preprocessing

For a time period ¢, n (n = ¢ x f) samples of raw
accelerometer, gyroscope and magnetometer data can be
collected, where f indicates the sensor sampling rate. Each

sensor data can be represented by a 3 X n matrix: D, =
2 . n

1
xX X i X
[d2,d2,d2)” = |yi 42 .- 7|, for the acceleromet
3 d3,d3]" = yﬁl y% y |, for the accelerometer
zZ, Z z

for example, and (’:henaall the tﬁree sensor data can be
expressed as D = [D,, Dy, Dy, ].

For transformer-based GAN training, CNN training
and fusion model training, we normalize each axis of
each sensor. Specifically, we normalize each axis i of
each sensor s into (0,1) by d§, = = Trm'iz%’;f%,
where ¢ = z,y,z for the three axes of each sensor
and s = a,g,m for the three sensors, respectively. Then
Danorm = [dinomrw d;norm’ dgnorrrJT for normalized sen-
sor data of the accelerometer can be obtained, and then all
the normalized sensor data can be described as D,,prm =
[Danorms Dgnorms Dmnorm)- Note that we do not remove the

gravity influence on data since it affects all the sensors.

4 TRANSFORMER GAN-BASED DATA AUGMENTA-
TION

Proposed by I. Goodfellow et al., generative adversarial
networks (GANSs) are commonly composed of a generator
G that captures the data distribution and a discriminator
D that estimates the probability that a sample comes from
the training data rather than G [30]. Most of GANs use
convolutional neural networks (CNNs) as GAN backbones,
such as DCGAN (deep convolutional GAN) [31], FCCGAN
(fully connected and convolutional GAN) [32], SiInGAN
(generative model from a single natural image) [33], and
BiGAN (bidirectional GAN) [34]. CNN-based GANs have
achieved high performance for computer vision tasks, such
as image synthesis [21], image enhancement [22] and image
editing [23]. CNN-based GAN data augmentation has been
widely used in the image processing field, as the latter
benefits from the effectiveness of the convolutional layer’s
effective feature extraction and the network structure that
starts with low-resolution images and then progressively
increases the resolution by adding layers [35]. However,
the extracted features are local from each layer and have
the global receptive field only in the last few layers, which
is not suitable for time-series data. Actually, to process
variable length sequences of inputs, not only CNN but even
RNN (Recurrent Neural Network) using their internal state
(memory) encounter hard-training issues, training gradient
explosion or vanishing, and training without parallelization.
The emergence of the transformer breaks through the above
limitations, which allows the modeling of dependencies
without regard to their temporal distance in the input or
output sequences. The transformer is able to draw global
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Fig. 2: Architecture of Generator

TABLE 1: Generator

Operator Output Repeat  Multi-head
Random Noise 200 1 -
MLP 1600 1 -
Reshape 50 x 32 1 -
Transformer 50 x 32 5 2
Upsample 200 x 8 1 -
Transformer 200 x 8 5 2
Reshape 20x 10x8 1 -
Conv 20x10x3 1 -
Reshape 200 x 3 1 -

dependency between input and output, and allows sig-
nificant parallellization [25]. The authors in [36] built a
GAN completely free of convolutions for natural images
and achieved new state-of-the-art results. However, the use
of a transformer-based architecture to augment time-series
data is still unexplored. Next, we exploit the transformer
architecture to construct a time-series data augmentation
network.

4.1 Transformer-based GAN

As our behavioral data are time series and because of the
reasons above, we have chosen the transformer encoder as
the basic block for our GAN [25]. The transformer encoder
consists of a multi-head self-attention module and a feed-
forward multiple-layer perceptron (MLP) with GELU non-
linearity.

4.1.1 Generator

The transformer-based generator is composed of 2 stages,
each of which stacks 5 transformer encoder blocks using 2
heads for the multi-head attention mechanism, as shown
in Fig. 2 and Table 1. Since sensor data are sequential,
the positional encoding is added before each transformer
encoder, thereby generating samples that fit time series of
real samples. In order to better fit the sensor data with a long
time window while reducing the number of parameters, an
upsample block is inserted between the two transformer
stages, which is composed of a reshaping and a pixel-shuffle
modules. After the two stages of transformer encoder, 1D
(one-dimensional) sequence data are generated, where the
embedding dimension reduces to a quarter of the original
one. To generate sample data with the same embedding di-
mensions as sensor data, 1D sequence data are first reshaped
to a 2D feature map, and then the embedding dimension of
the map is compressed by Conv, and finally is reshaped to
1D sequence.

4.1.2 Discriminator

The discriminator can be regarded as a classifier that iden-
tifies the inputs are real data or generated data. Since a
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TABLE 2: Discriminator

Operator Output #Kernel KSize Padding Stride
Sensor Data 1x200x3 - - - -
Conv (LeakyReLU) 32 x 100 x 3 32 (5,1) (2,0) 2,1)
Conv (LeakyReLU) 64 x 50 x 3 64 (5,1 (2,0) 2,1)
Conv (LeakyReLU) 128 x 25 x 3 128 (5,1) (2,0) 2,1)
AvgPool 128 - - - -

FC (LeakyReLU) 512 - - - -

FC 1 - - - -

transformer-based discriminator seems to be an inferior
“competitor” and is much more data-hungry, a CNN-based
discriminator can alleviate this issue [36]. Thus, we de-
sign the discriminator by a CNN architecture, consisting
of three convolutional layers (Conv), one average pooling
layer (AvgPool) and two fully connected layers (FCs), re-
spectively, as illustrated in Table 2. The activation function,
a leaky version of the Rectified Linear Unit (LeakyReLU),
is applied on the three Convs and the first FC, and the loss
function is WGAN-GP [37]. For the three Conv layers, we
use a kernel with a fixed size, where the number of kernels
is doubled to make the feature map small and thick, and
the second element of the kernel size is set to 1 to ensure
that data features corresponding to different axes can be
extracted respectively. The padding and stride ensure data
length can be reduced by 50% after each convolutional layer.
The outputs are then fed to AvgPool to obtain 1D feature
sequences and finally are fed to two FC layers to classify the
inputs into two classes, real samples or fake samples.

4.2 Data Augmentation

On the one hand, the generator takes a random noise with
format of (200 x 1) as its input (to train the correlation
between 200 samples) and then feeds the noise to a MLP
to obtain a vector with length of L x C, where L represents
the length of a time window and C indicates C-dimensional
embedding for sensor data (L = 50 and C = 32, by default).
Then the reshaped sensor axis embedding with format of
(L x C) are fed into the first transformer encoder and
the correspondence between different embeddings, which
is users’ behavior trajectory in different time points, is
calculated recursively. The upsample block first reshapes the
1D sequence data back to a 2D feature map with format of
(H x W x (), where H x W = L. It subsequently adopts
the pixel-shuffle to obtain an upsampling feature map with
format of (2H x 2W x C/4) and then combines the first
two elements in the embedding dimension resulting in a 1D
sequence with format of (4L x C/4), thereby extending the
length of the generated sequence. The 1D sequence data of
(4L x C/4) are then fed to the second transformer encoder
and the correspondence is recursively calculated as well.
Afterwards, the output of the second transformer encoder
is reshaped to a 2D feature map of (4L/10 x 10 x C/4)
where the feature map channel is equal to 1D sequence’s
embedding dimension, and then we apply Conv to further
compress the channel number to 3 which corresponds to the
three sensor axes. Finally, the Reshape layer reshapes the 2D
feature map back to 1D sequence to generate an output of
(200 x 3), which corresponds to 2-second D, data.

On the other hand, the 2-second D,,,,., data combined
with the produced data by the generator with shape of

(1 x 200 x 3) are fed into the discriminator. In the first
convolutional layer, there are 32 filters with kernel size of
(5,1). The filters for the second and third Conv layers are
64 and 128, respectively. All the three Conv layers have the
same kernel size of (5, 1), padding (2,0) and stride (2, 1).
They continuously extract features from different axes and
compress the length of data sequence from 200 to 100, then
50, and finally to 25. The feature map of (128 x 25 x 3) is
produced after the three Convolutions, then is fed to the
AvgPool layer to obtain features of (128 x 1), and finally
two FCs are applied to obtain a scalar for the classification
of the produced data.

Next, we use the WGAN-GP loss function to calculate
the distance between the 2-second D,,,,.,,, data distribution
and the created data distribution, and then use backpro-
pogation to further update the generator parameters after
updating discriminator parameters every n times until a
fixed number of epochs is reached, where n is a hyper-
parameter that can balance the generator training process
and the discriminator training process.

Finally, the data generated by the transformer-based
GAN can be described as: Dypqpn, where |Dipan| = 3 X
| Dnorm| (6-second data). After the data augmentation, the
dataset can be expressed as: Dggtaset = [Dnorms Diranl,
which will be used for deep feature extraction.

5 DEEP FEATURE EXTRACTION

In this section, we first design the CNN architecture based
on the ghost module and ghost bottleneck. Then, we elabo-
rate on how to extract deep features by the designed CNN.

5.1 CNN Design

Traditional CNNs usually need lots of parameters and float-
ing point operations to achieve a satisfactory accuracy. Thus,
lightweight and efficient network architectures with accept-
able performance, such as MobileNet [38] and ShuffleNet
[39], have been investigated for mobile devices with fewer
parameters and calculations. Inspired by MobileNetV2 [40]
that can project features to a low-dimensional representation
with a linear convolution and ghostNet [41] that can fully
reveal information underlying intrinsic features, we design
a CNN architecture based on the ghost module and ghost
bottleneck.

5.1.1 Ghost module

The ghost module utilizes a few filters to generate more
feature maps from one standard convolutional layer [41].
Instead of a standard convolution, the ghost module splits
a standard convolutional layer into two parts: 1) a standard
convolution with fewer filters that generates a few intrinsic
feature maps, and 2) depthwise convolution on previous
intrinsic feature maps to gain more feature maps. The struc-
ture of the ghost module is described in Fig. 3 and Table 3.
As we can see, the ghost module comprises a Conv layer,
a depthwise convolution (DWConv) layer and a concatena-
tion operation. Specifically, the K x 1 Conv layer with a
Rectified Linear Unit (ReLU) takes a C' x H x W input and
produces a (N/s) x H x W intrinsic feature map, where C' is
the input channel number, i/ and W indicate the height and
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width of the input data, s is a hyper-parameter to control
the number of generated intrinsic feature maps, and N/s
is the number of convolutional kernels, respectively. Then,
the D x 1 DWConv layer applies a linear operation on the
produced feature map to generate a (s—1) x (N/s) x Hx W
ghost feature map, where D is the kernel size of the DW-
Conv. Finally, the ghost module outputs a N x H x W
feature map by concatenating the intrinsic feature map
and the ghost feature map. The computational cost of the
ghost module is (N/s) x H x W x C x K x 1+ (s —
1) x (N/s) x H x W x D x 1. However, with the same
input and kernel size, the computation cost for a standard
convolution is N x H x W x C x K x 1. Compared with

a standard convolution, the computation cost of the ghost

dule i (N/s)x HXxW XCXKX14(s—1)x(N/s)x HXxW xDx1 :
moaule 1s (N/s)x HxW xCx K x1 o
that of the standard convolution, which can be simplified as
(N/s )><C><K+(N/ )xD C+(e 1) _

N Ox = 1, since D is close to K
and s is much less than C. We set s = 2 in our experimental
setting, and thus the computational cost of the ghost module
is just half of the standard one but the performance remains.

5.1.2 Ghost bottleneck

The structure of the ghost module is described in Fig. 4
and Table 4. As shown, the ghost bottleneck consists of a
ghost module, a DWConv layer, and another ghost module.
Specifically, the first ghost module expends a C' x H x W
feature map in a low-dimensional space to a tC' x H x W
output in a high-dimensional space, where ¢ is an expansion
factor. The DWConv layer with kernel size D x 1 and stride
of 2 downsamples the generated feature map to produce a

x (H/2) x W output. The second ghost module maps
the input manifold in a high-dimensional space into a
C x (H/2) x W output in a low-dimensional space, which
has the same channel number to the input of the first ghost
module. In addition, the kernel sizes of K x 1 and D x 1
in ghost module indicate the kernel sizes of the Conv layer
and the DWConv layer, respectively.

5.1.3 CNN architecture

Building on the ghost module and ghost bottleneck, we
design a CNN architecture to extract deep features, as
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Fig. 5: Architecture of CNN

illustrated in Fig. 5. As shown in Fig. 5, the designed CNN
architecture comprises a Conv layer, three ghost bottleneck
layers, an AvgPool layer, and two FC layers.

5.2 CNN-based Feature Extraction

Based on the designed CNN, we present a deep feature
extraction approach to learn discriminative features for
adaptive deep feature fusion. Given the transformer GAN-
augmented data Dggieset, We exploit the designed CNN
architecture to extract deep features from the raw accelerom-
eter, gyroscope and magnetometer data, respectively. For
each of the three sensors, there are 600 samples (2 seconds
x 100 Hzx 3 axes x 1 sensor) for a 2-second time window,
which are reshaped as 1 x 200 x 3. As demonstrated in Table
5, with a 1 x 200 x 3 sensor data input, the Conv layer
with 32 filters, kernel size 9 x 1 and stride 2 produces a
32 x 100 x 3 output. Three stages of the ghost bottlenecks
gradually decrease the sizes of their input feature maps by
using different kernel sizes of (7x 1), (5x 1), (3 x 1). Thatis,
the height H of the feature map decreases, but the width C
corresponding to the three axes of a sensor and the channel
number C remain the same. All the ghost bottlenecks are
applied with 32 filters, expansion ratio ¢ = 6 and stride = 2.
The AvgPool layer outputs a preliminary 32-dimensional
feature vector F; for a sensor i(i = {a,g,m}). After the
three feature vectors corresponding to the three sensors are
extracted, they are fed to a feature fusion module to generate
more discriminative deep features for final classification. In
addition, the two FC layers are utilized to classify the users.

6 ADAPTIVE DEEP FEATURE FUSION

Since different sensors are available on smart devices, it
is imperative to optimally exploit the data provided by
them to identify users. While different sensors contribute
differently to the authentication, it is necessary to use a
feature fusion strategy to jointly learn the features from dif-
ferent sensors to accurately and robustly authenticate users.
However, most of the existing feature fusion strategies
are based on fixed combination weights, including direct
concatenation [28], and weighted concatenation [29]. In our
work, we propose an adaptive deep feature fusion strategy
(adaptive-weighted concatenation method) to optimize the
joint feature representation of the accelerometer, gyroscope,
and magnetometer sensors, by adaptively assigning weights
to the different feature vectors. Finally, we concatenate the
latter into a fused feature vector for accurate and robust
classification.
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TABLE 3: Ghost Module

Input

Operator

Output

CxHxW
(N/s) x Hx W

K x 1 Conv, Padding, ReLU
D x 1 DWConv, Padding, Linear

(N/s) x Hx W
(s—1)x (N/s) x Hx W

(N/s) x Hx W 4+ (s—1) x (N/s) x Hx W  Concate N x HxW
TABLE 4: Ghost Bottleneck
Input Operator Output
Cx HxXxW K x 1, D x 1 Ghost module tC'x Hx W
tC x Hx W D x 1 DWConv, Stride=2, Linear tC x (H/2) x W
tC x (H/2) x W K x 1, D x 1 Ghost module C x (H/2) x W
TABLE 5: CNN Architecture
Operator Output # Kernel KSize Stride
Sensor Data 1 %200 x 3 - - - -
Convolution 32x100x3 - 32 9,1) 2,1
Ghost Bottleneck 32 x 50 x 3 6 32 (V)] 20
Ghost Bottleneck 32 x 25 x 3 6 32 (5,1) 2,1)
Ghost Bottleneck 32 x 13 x 3 6

Average Pooling 32
Full Connection 512
Full Connection 44

32 G1) 21

Given the three 32-dimensional feature vectors Fy, Fy,
and F;, extracted by the designed CNN, the adaptive deep
feature fusion (ADFF) strategy adaptively fuses the three
sensor feature vectors to a 96-dimensional feature vector
ADFF, where ADFF = [ADFF,, ADFF, ADFF,).
Since the fusion processes for the three 32-dimensional
feature vectors F,, Iy, and I}, are the same, we take the
accelerometer feature vector F, as an example to elabo-
rate the fusion process of the adaptive-weighted sum, as
demonstrated in Fig. 6. As illustrated in Fig. 6, the ADFF
strategy adaptively assigns weights according to F,, for the
three feature vectors, and then adds the three weighted
feature vectors together to generate a 32-dimensional fea-
ture vector ADF'Fy,. Specifically, for each feature vector F;
(¢ = {a,g,m}), ADFF maps F; to three feature vectors Q;
(query), K; (key) and an identity F;, where Q; = F; x Wg,
and K; = F; x Wk, (¢ = {a,g,m}). For example, Q, =
Fo x Wq, and K, = F, x Wk _, where “x” indicates the
dot product. Then, ADFF calculates the dot products of @),
with all keys K; (i = {a,g,m}) to generate three corre-
sponding scores Sg, Sy, Sy, for the three sensor features.
Next, ADFF applies a softmax function on the three scores
S; (i = {a,g,m}) to obtain the corresponding weights
for the three identities. Finally, ADFF computes the dot
products of the identities with their weights and sums them
together to obtain the weighted feature vector ADFF,.
In summary, the 32-dimensional weighted feature vector
ADFF, is generated by Eq. (1):

>

i={a,g,m}

ADFF, =

softmax (QaKl-T> x F; 1)

where Q; = F;, x Wg, and K; = F; x Wk, for i =
{a,g,m}. Similarly, the corresponding weighted feature
vectors ADFFy and ADF'F,, are obtained by Egs. (2) and
(3), respectively:

ADFF, =

>

i={a,g,m}

softmax (QgKiT) x F; 2)

softmax

5T

Fig. 6: Adaptive-weighted Sum for Accelerometer

and

ADFF,, =

>

i={a,g,m}

softmax (QmKiT) x F; 3)

Finally, as demonstrated in Fig. 7, the 96-dimensional
fused feature vector ADFF is obtained by concatena-
tion of the three weighted feature vectors: ADFF =
[ADFF,, ADFF,, ADFF,]. Note that our feature fusion
model (ADFF) is trained in the enrollment phase and has
0.07M parameters, which is a matrix computation in the
continuous authentication phase. Due to the low number of
parameters and matrix-level computation complexity, ADFF
strategy is suitable for resource-limited mobile devices.

7 AUTHENTICATION WITH OC-SVM

Based on the fused deep features of ADFF, ADFFDA
utilizes a one-class support vector machine (OC-SVM) clas-
sifier to authenticate users. OC-SVM maps data points into a
high-dimensional feature space with the kernel function and
searches a surface of a minimal hyper-sphere that contains
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as many objective data points as possible [42]. Data points
within the hyper-sphere are regarded as positive samples
while data points outside of the hyper-sphere are recognized
as negative samples.

In the enrollment phase, the OC-SVM is trained from
the positive samples, based on the adaptive-weighted deep
features with the radial basis function kernel and ADFFDA
learns the profile of the legitimate user from the training
data. In the authentication phase, the trained OC-SVM maps
the testing data into the same high-dimensional feature
space as in the training phase’s and ADFFDA classifies the
current user as a legitimate user or an impostor.

8 PERFORMANCE EVALUATION

In this section, we introduce the experimental settings and
describe the extensive experiments that we have conducted
to evaluate the performance of ADFFDA. For performance
evaluation, we begin with the efficiency of transformer-
based GAN and the effectiveness of GAN-based data aug-
mentation approach. Then, we evaluate the efficiency of the
CNN architecture, and the effectiveness of our adaptive-
weighted feature fusion scheme. Finally, we assess the ef-
ficiency of the OC-SVM classifier.

8.1 Experimental Settings

In this section, we depict the experimental settings involv-
ing the dataset collection, the training processes of the
transformer-based GAN, CNN, feature fusion model, and
OC-5VM classifier, respectively, and the evaluation metrics.

8.1.1 Dataset

To collect the sensor data, we developed a data collection
tool for Android phones to collect behavioral data from the
users’ interaction with the phones. After receiving the IRB
approval from William & Mary in 2014, we started recruiting
volunteers for data collection. In this regard, we recruited
100 volunteers (53 male and 47 female) to operate the
phones equipped with the developed tool. To obtain high-
quality data, the volunteers were required to conduct three
designed tasks: (1) document reading, (2) text production,
and (3) navigation on a map to locate a destination. Once
they logged in the developed tool, a reading, writing, or a
map navigation session was randomly assigned, each last-
ing about 5 to 15 minutes. Based on the assignments, they
were expected to perform 24 sessions including 8 reading
sessions, 8 writing sessions, and 8 map navigation sessions

to collect totally 2 to 6 hours of behavior traits [43]. We
recorded the accelerometer, gyroscope and magnetometer
sensor readings with a sampling rate of f = 100 Hz as CSV
files on the phones.

In our experiments, based on the collected data from
the accelerometer, gyroscope and magnetometer sensors, we
have retained the data from 88 volunteers in CSV files on
the phones and have chosen the first 100-minute samples
for each volunteer with a 2-second window size as the
experimental dataset. Note that we find the data of 24
sessions are incomplete for the rest 12 volunteers due to
the insensitive sensors in one of the experimental phones.

8.1.2 Training

Based on the 88 volunteers’ dataset, 44 volunteers’ samples
were randomly selected for transformer-based GAN train-
ing and the corresponding augmented samples were used
for CNN training, 34 for the deep feature fusion model
training, and 10 for classifier training. The reasons are that
1) CNN as the feature extractor needs more training data
(44 volunteers’) to enhance feature generalization; and 2) 10
volunteers” data are convenient for ten-fold cross-validation
of the OC-SVM classifier. Specifically, we first train the
transformer-based GAN on 44 volunteers’ samples with
WGAN-GP loss function and Adam optimizer to obtain a
generator for each volunteer until 2000 epochs. Then, with
the augmented data generated by the trained generators, we
train a CNN based on the cross-entropy loss function and
RMSprop optimizer until 200 epochs for the accelerometer,
gyroscope and magnetometer sensors, respectively. Next,
based on the CNN-extracted features from the 34 volun-
teers” samples, we train the feature fusion model by the
same process to the CNN until 10 epochs. Finally, we utilize
the ten-fold cross-validation to train the OC-SVM classifier
100 times on the features extracted from the trained CNN
and fusion model from 10 volunteers’ samples.

For Transformer-based GAN training, we have trained
three independent transformer-based GANSs for the three
accelerometer, gyroscope and magnetometer sensors, re-
spectively, on the corresponding 44 volunteers” samples
with a batch size of 512. For each GAN, with a batch of
200-dimensional Gaussian noise as inputs, the generator
creates a batch data. The created data and the real data
are fed to the discriminator to learn to discriminate them
from each other, and the parameters of the generator and
discriminator are updated accordingly. For the GAN trained
on the accelerometer data or the gyroscope data, we use
WGAN-GP loss function and Adam optimizer to update
the learning rate for 2000 epochs with an initial value of
0.000015 or 0.00001 for both the generator and discriminator,
where we train the generator once every 5 epochs of the
training of the discriminator. For the GAN trained on the
magnetometer data, we also use Adam optimizer to update
the learning rate for 2000 epochs with an initial value of
0.000015 for both the generator and discriminator, where
we train the generator once every 2 epochs of the training
of the discriminator. After the transformer-based GAN is
trained, only generators remain for generating additional
sensor data.

For CNN training, based on the transformer-GAN aug-
mented data from 44 volunteers’ samples, 90% volunteers’



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, NOVEMBER 2021 9

samples are randomly selected for CNN training and the
rest 10% are used for testing, with a batch of size 256. For
each epoch, a batch of training samples are fed into the
designed CNN, and then the outputs with user labels are
exploited to compute cross-entropy loss. For optimization,
RMSprop is used to update the network parameters. We set
the initial learning rate as 0.001 and the weight decay as
0.0001. The total number of training epochs is 200. We train
three CNNs for the accelerometer, gyroscope and magne-
tometer sensors, respectively.

For feature fusion model training, we utilize the trained
CNNs with fixed parameters to extract features from the
three sensors” data. With the 34 volunteers’” samples, 90%
volunteers” samples are randomly selected for fusion model
training, and the rest 10% are used for testing, with a
batch of size 256. For each epoch, with the CNN-extracted
features, we explore the same training process as CNN to
train the fusion model with the cross-entropy loss function
and RMSprop optimizer until 10 epochs.

For Classifier training, we train the OC-SVM classifier
with RBF as the kernel function, for which the kernel co-
efficient v = 0.005, and an upper bound on the fraction
of training errors and a lower bound of the fraction of
support vectors are set as 0.01. Based on the 10 volunteers,
we randomly select one as a legitimate user and the rest
9 as impostors. The positive samples from the legitimate
user are evenly divided into 10 subsets, where each of the
subsets is sequentially utilized as a testing dataset and the
remaining 9 subsets are exploited as a training dataset. In
order to keep the same amount of positive samples, 1/9 the
samples randomly selected from the 9 impostors are used as
a negative training dataset. The selected negative samples
are shuffled and then evenly divided into 10 subsets, each
of which is sequentially exploited as a testing dataset. With
the 10 volunteers” samples, we utilize the ten-fold cross-
validation to train the OC-SVM classifier 100 times, and the
average of the 100 results is used as the classification result.

8.1.3 Evaluation Metrics

We utilize the equal error rate (EER) as the main evalua-
tion criterion, and consider the false acceptance rate (FAR),
false rejection rate (FRR), accuracy, and F1 score as the
complementary metrics for the performance evaluation of
ADFFDA. Given the four basic metrics of true positive (TP),
true negative (TN), false positive (FP), and false negative
(FN), we define the FAR, FRR, and EER, where FAR =
FFEF% indicating the probability that an impostor is falsely
identified as a legitimate user [44], FRR = % repre-
senting the probability that a legitimate user is incorrectly
classified as an impostor [6], and EER is the point where
the FAR equals to the FRR [9]. We define the accuracy
— __ TP+TN __  hich indicates th -
as accuracy TprrN+rprry, Which indicates the ca
pability of distinguishing between a legitimate user and
an impostor. Given precision = TPT_F% indicating the
capability of correctly classifying a user as a legitimate
user, and recall = ijjr% representing the capability of
classifying a legitimate user as the legitimate user, F1 score
can be defined as F'1 score = %m, which is
the harmonic mean of the precision and recall indicating the
comprehensive performance of the proposed system [45].

8.2 Efficiency of Transformer-based GAN

To evaluate the efficiency of the proposed transformer-
based GAN for augmenting sensor data, we exploit three
metrics, i.e. discriminator loss, maximum mean discrepancy
(MMD) and t-distributed stochastic neighbor embedding (t-
SNE), to measure the quality of the generated sensor-like
data by the designed transformer-based GAN. Discrimina-
tor loss represents the Earth-Mover distance between the
real sensor data and the generated sensor-like data until
the network converges [46]. The higher the quality of the
generated data, the closer the loss is to 0. MMD measures
the distance between the distributions of the real sensor data
and the generated data [47]; the higher the quality of the
generated data, the closer the MMD is to 0. t-SNE maps
the high-dimensional generated data non-linearly into two-
dimensions, where the corresponding data can be visualized
[48].

Based on the transformer-based GAN training process
in Sec. 8.1.2, we visualize the discriminator losses for the
three sensors, i.e. the accelerometer, gyroscope, and magne-
tometer, in Fig. 8. As shown in Fig. 8, the three discrimi-
nator losses sharply drop until 500 epochs, then gradually
increase, and finally slightly oscillate around a small value
(close to 0) along with the increase of the training epochs,
where they reach 0 around 1100 epochs. The discriminator
losses indicate that the three sensor generated data have
high similarity to real data. Moreover, with the trained
transformer-based GAN, we calculate the MMD of 50 real
and 50 generated samples for one epoch until 2000 epochs
for the three sensors, respectively, as shown in Fig. 9. As
illustrated in Fig. 9, the MMDs of the accelerometer and
magnetometer data rapidly decrease until 500 epochs and
then slightly oscillate around a small value (close to 0), while
the MMD of the gyroscope data slowly decreases and finally
converges to a small value. The MMD results indicate that
the generated sensor data show high qualities. In addition,
the distributions of 500 real and 500 generated samples of
the three sensors are visualized by t-SNE in Fig. 10. In Fig.
10, we exploit the blue point, orange star, and green cross to
represent the accelerometer, gyroscope, and magnetometer
data, respectively, where the light color indicates the real
sensor data and dark color represents the generated sensor
data. As illustrated in Fig. 10, the sensor data are clearly
separated by colors into three clusters corresponding to
three sensors. In each cluster, the real data and generated
data are closely distributed together, which indicates the
generated sensor data have high similarity to the real sensor
data.

8.3 Effectiveness of Transformer GAN-based Data Aug-
mentation

To evaluate the effectiveness of the transformer GAN-based
data augmentation approach, we conduct comparison be-
tween ADFFDA with transformer GAN-based data aug-
mentation and ADFFDA without data augmentation on dif-
ferent dataset sizes. With a data size varying from 100 to 700,
we plot boxes of EERs for ADFFDA with the transformer
GAN-based data augmentation approach (orange box plot)
and ADFFDA without augmentation approach (blue box
plot), as demonstrated in Fig. 11. As shown in Fig. 11, EERs



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, NOVEMBER 2021 10

—#— Accelerometer
s L —=— (Gyroscope
&— Magnetometer
2
=]
2
-
=]
=
g
£
=
Zor
A
1 1 1 1 ]
0 500 1000 1800 2000
Epochs
Fig. 8: Discriminator Loss
41+ —#*— Accelerometer
\ —=— Gyroscope
—<— Magnetometer
3 -
@)
=
=2
1 -
0 -
1 1 1 1 ]
0 500 1000 1500 2000
Epochs
Fig. 9: MMD

Fig. 10: Distribution of real and generated samples by t-SNE
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Fig. 11: EER of ADFFDA with or without Transformer-based
GAN augmentation over different data sizes

for both the approaches gradually decrease as the data size
increases. Moreover, EERs with the transformer GAN-based
data augmentation approach are associated, for all the data
sizes, with clearly lower values compared to those obtained
with no data augmentation. That is to say, the transformer
GAN-based data augmentation approach significantly im-
proves the identification accuracy of ADFFDA. In addition,
we list, in the first two rows of Table 6, the mean EERs with
or without transformer GAN-based data augmentation over
different data sizes. As shown, ADFFDA with transformer
GAN-based data augmentation achieves an EER of 1.62%
with data size of 700, which dramatically improves that
without data augmentation. From data size of 500 onwards,
the margin of improvement though data augmentation is at
least 3.99%.

To further assess the effectiveness of the trans-
former GAN-based data augmentation scheme, we com-
pare ADFFDA with representative data augmentation ap-
proaches, i.e. CWGAN [24], permutation, sampling, scaling,
cropping and jittering [16]. Based on our data, we conduct
the same experiment by replacing the transformer-based
GAN in ADFFDA with the data augmentation techniques
mentioned above, and the corresponding results are illus-
trated in Fig. 12 and tabulated in Table 6. As described in
Fig. 12, EERs of all the augmentation approaches gradually
decrease, in general, with the increase of the data size, which
validates the efficiency of data augmentation. As depicted in
Table 6, CWGAN reaches the best EER of 2.76% with data
size of 600; Jittering and permutation achieve the lowest
EERs of 2.94% and 6.96% on data size of 500, respectively;
Sampling, scaling, and cropping obtain the best EERs of
8.52%, 6.42%, and 4.97% on data size of 700, respectively.
In comparison, our transformer-based GAN reaches the
lowest EER of 1.62% and standard deviation (SD) of 1.15%
and significantly outperforms the representative data aug-
mentation approaches above, by margins of 1.14% (2.76%,
CWGAN with data size of 600) and 0.97% (2.12%, jittering
with data size of 500) at least.
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TABLE 6: Mean (SD) EER (%) with different data augmentation approaches over different data sizes.

Approach \ Data size 100 200 300 400 500 600 700
No Augmentation 18.65 (8.47) 16.98 (8.46) 9.98 (7.48) 9.65 (7.93) 7.51 (4.88) 7.03 (5.31) 6.36 (3.82)
Transformer-GAN 11.64 (5.80)  8.20 (5.90) 4.03 (2.72) 3.13 (2.61) 3.52 (4.30) 2.89 (3.15) 1.62 (1.15)
CWGAN 5.95 (5.94) 4.20 (4.13) 4.25 (3.61) 2.97 (3.33) 6.19 (5.77) 2.76 (2.62) 3.54 (3.22)
Permutation 19.35 (6.53) 17.88 (6.88) 13.03 (5.09) 12.90 (5.40) 6.96 (3.88) 8.59 (4.39) 7.69 (3.99)
Sampling 13.73 (7.32) 10.15(6.39) 9.42 (5.32) 13.52 (7.45) 11.72(7.20) 12.65(7.33) 8.52 (4.51)
Scaling 20.78 (7.78)  16.51 (6.18) 10.23 (5.30) 8.72 (4.43) 8.52 (4.20) 8.50 (5.35) 6.42 (3.31)
Cropping 22.79 (7.57) 17.68 (6.90)  9.84 (4.41) 8.53 (4.40) 5.50 (3.28) 5.71 (3.75) 4.97 (2.92)
Jittering 14.40 (6.39) 15.03 (8.56) 12.42 (7.50) 11.38 (7.71) 2.94 (2.12) 3.68 (2.82) 3.77 (2.45)
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Fig. 12: EER with different data augmentation approaches
over different data sizes

8.4 Efficiency of CNN

To evaluate the efficiency of the designed CNN archi-
tecture, we compare our CNN to existing representative
model architectures, including AlexNet [49], DenseNet [50],
GoogLeNet [51], and ResNet [52]. To adapt these model
architectures to our CNN input format (1 x 200 x 3), we
set the second dimension of the kernel size as 1 for all
the convolution layers and pooling layers, and the second
dimension of padding as 0. Moreover, in order to output
the same feature dimension in the intermediate layer as
our CNN, we add two FC layers with 32 and 1024 nodes
before the fully connected layer used for the final classifi-
cation used to obtain 32-dimensional features that provide
sufficient information for subsequent classification.

Based on our data, we conduct the same experiment by
replacing our CNN in ADFFDA with AlexNet, DenseNet,
GoogLeNet, and ResNet18. We plot the EER of the different
architectures in Fig. 13. As illustrated in Fig. 13, our CNN
achieves the best EER w.r.t other model architectures. Fur-
thermore, we list the EER, SD, and number of parameters
of all the network architectures in Table 7. As listed in
Table 7, compared to the other model architectures, our
CNN reaches the lowest EER of 0.01% with the smallest
SD of 0.06%, while having the lowest number of parame-
ters, i.e. 0.14 million. ResNet18 is the second best, but its
performance is far beyond ours. Overall, although AlexNet,
DenseNet, GoogLeNet, and ResNet18 have shown excellent
performance in computer vision tasks, they reach much

Different Model Architecture

Fig. 13: EER of representative model architectures

TABLE 7: Mean EER, SD (%) and parameter on representa-
tive network architectures

Model EER SD Parameter
Ours 0.01 0.06 0.14M
AlexNet 061 1.16 1.24M
DenseNet 204 170 2.36M
GooglLeNet 046 049 341M
ResNet18 033 037 393M

lower authentication accuracy for sensor data. The reason
may be that: 1) these deep learning models are originally
designed for image processing, and thus not suitable for
sensor data; and 2) these complex models should be trained
by a large amount of data.

The main conclusion in this experiment, is that among
all the representative model architectures, our CNN is by
large the most suitable network architecture for ADFFDA.

8.5 Effectiveness of Adaptive-weighted Feature Fusion

To evaluate the effectiveness of our fusion strategy, we com-
pare our adaptive-weighted concatenation fusion scheme
with existing strategies, including serial fusion (feature di-
rect concatenation), parallel fusion [28], and deep feature
fusion [29]. Based on our dataset, we conduct the same
experiment by replacing our strategy with the three existing
strategies above in ADFFDA. We plot the accuracy and
F1 score for the different fusion strategies in Fig. 14 and
list the mean EER, accuracy and F1 score in Table 8. As
illustrated in Fig. 14, our adaptive-weighted concatenation
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TABLE 8: Mean (SD) EER, accuracy and F1 score (%) of
different fusion strategies

Fusion strategy ~ EER Accuracy F1 score

Ours 0.01 (0.06) 99.12(0.37)  99.11 (0.37)
Serial 0.07(0.34)  97.97 (3.50)  97.76 (4.47)
Parallel 142 (1.71)  97.93 (3.32)  97.78 (4.58)
Deep Fusion 0.03 (0.09) 98.96 (0.41)  98.95 (0.43)

fusion scheme shows the highest accuracy and F1 score,
along with the lowest standard deviation (SD), compared
to the three existing fusion strategies. Moreover, as listed in
Table 8, our strategy reaches a 0.01% EER, a 99.12% accu-
racy, and a 99.11% F1 score, which dramatically surpasses
the deep feature fusion strategy with margins of 0.02%,
0.16%, and 0.16%, respectively. This shows the power of
our adaptive-weighted feature fusion scheme as an effective
fusion strategy for ADFFDA.

Furthermore, we visualize the adaptive weight assign-
ment for the three sensors, i.e. accelerometer, gyroscope,
and magnetometer, by randomly selecting three samples
from the 10 testing users, as illustrated in Fig. 15. Fig. 15
shows three weight assignments S,, Sq, and S, for each
of the 10 users (z axis) corresponding to three weighted
feature vectors ADF'F,, ADFF,, and ADFF,, for three
samples (y axis). Specifically, for user 6, for example, S,
dominates the weight assignments in the weighted feature
vectors ADFF,, ADFF,, and ADFF}, in sample 1, which
indicates that the gyroscope contributes the most to the
feature fusion compared to the other two sensors. In sample
2, however, the three weights of S,, Sy, and S,, evenly
contribute to the weighted feature vectors, which indicates
all the sensor features make even contributions to the fused
feature. In sample 3, S, contributes the least since it is as-
signed the least weights. From Fig. 15, we can find that when
the same user operates the smartphone in different ways,
the contributions of the sensor features to the feature fusion
vary accordingly. For different users, the contributions of the
sensor features are generally distinct. This illustrates how
effective our adaptive-weight feature fusion scheme is for
ADFFDA.
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Fig. 15: Visualization of adaptive weight assignment

TABLE 9: Mean (SD) EER, FAR, and FRR (%) of different
classifiers

Classifier ~EER FAR FRR

OC-SVM  0.01 (0.06) 0.00 (0.00) 1.76 (0.74)
LOF 0.05 (0.13)  0.00 (0.03) 0.58 (0.47)
IF 0.25 (0.32)  0.00 (0.00) 4.93 (1.76)
kNN 0.33 (0.46)  0.66 (0.93) 0.00 (0.00)

8.6 Efficiency of OC-SVM classifier

To investigate the efficiency of our OC-SVM classifier, we
compare it with representative classifiers, namely the lo-
cal outlier factor (LOF), isolation forest (IF), and k-nearest
neighbors (kNN). Specifically, LOF first measures the local
deviation of the data point to its neighbors, and then decides
whether a data point is an outlier using the local density
estimated by kNN based on a given distance metric [53].
IF detects abnormal data points by subsampling the data
set to construct iTrees and further integrate multiple iTrees
into a forest to detect abnormal data [54]. kNN takes every
new observation and locates the observation in feature space
with respect to all training observations [55]. We conduct
the same experiment by replacing the OC-SVM classifier
with LOF, IF, and kNN in ADFFDA. Based on our dataset,
we plot the EER of different classifiers, as shown in Fig.
16. As described in Fig. 16, OC-SVM and LOF classifiers
show better EERs than those obtained with the IF and kNN
classifiers, and OC-SVM has less outliers compared to LOFE.
Moreover, we tabulate the mean EER, FAR, and FRR with
SDs of different classifiers in Table 9. As shown in Table
9, the OC-SVM classifier has by far the best EER i.e. 0.01%
and FAR ie. 0.00%, and dramatically surpasses the LOF,
as the OC-SVM’s EER is 5 times less than LOF’s (0.01% vs
0.05%) classier of 0.04% EER. In addition, according to the
experiments, the training time for OC-SVM is 0.20 s while
LOF ’s is 19.25 s. Therefore, we conclude, overall, that the
OC-SVM classifier is by large the most suitable classifier for
ADFFDA.

To further assess the performance of the OC-SVM classi-
fier, we evaluate the accuracy on the 10 volunteers’ data and
34 volunteers’ data for testing in the feature fusion model
training process. Specifically, based on n (n = 10, 20, 30, 40)
volunteers, we randomly select one as a legitimate user
and the rest n — 1 as impostors to conduct ten-fold cross-
validation on the OC-SVM classifier. Table 10 depicts the
mean EER with SD for the OC-SVM classifier on different
number of users. As listed in Table 10, with the increase
of the users, the EER gradually increases and remains at
0.06% with 30 or 40 users, which indicates that the OC-SVM
classifier still shows a high accuracy on more users’ data.
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Fig. 16: Comparison of different classifiers

TABLE 10: Mean (SD) EER (%) of the OC-SVM classifier
with Different User Number

User Number 10 20 30 40
EER 0.01 (0.06) 0.04 (0.15)  0.06 (0.21)  0.06 (0.21)

8.7 Security Analysis

To evaluate the performance of ADFFDA in user authen-
tication against spoofing, we have conducted experiments
under mimic attacks on 10 volunteers. In the mimic attack,
we expect an adversary to try his/her best to mimic the
behavioral patterns of a legitimate user. For mimic attack
data, we add a random Gaussian noise (range from 0 to
0.1) to the 10 volunteers’ original data, which indicates
very tiny vibration in every sensor. We utilize the ten-fold
cross-validation to train the OC-SVM classifier, where 50%
legitimate user’s data and 50% corresponding mimic data
are used as the testing dataset. The experimental results
show that ADFFDA obtains a 0.01% FAR and 0.16% EER,
which indicate that ADFFDA can resist mimic attacks.

9 LITERATURE REVIEW

In this section, we review the existing literature on be-
havioral biometrics-based methods, data augmentation ap-
proaches as well as feature fusion strategies, respectively, in
authentication systems.

9.1 Behavioral Biometrics in Authentication Systems

In order to explore effective behavioral biometrics for differ-
ent authentication systems, several modalities, such as touch
gestures, gaits, heartbeats, and chest motions, have been ex-
ploited as unique characteristics for behavioral biometrics-
based authentication. The authors in [7] explored six types
of touch gestures (single-tap, swipe forward, swipe back-
ward, swipe down, two-finger swipe forward, and two-
finger swipe backward) to authenticate users in a contin-
uous and noninvasive authentication system for wearable
glasses. In [8], the authors exploited physical characters
of touching fingers by investigating active vibration sig-
nal transmission through fingers in a behavior-irrelevant

on-touch user authentication system. The authors in [9]
utilized a touch sensor to analyze the on-screen gesture
while using an inertial sensor to analyze the device’s motion
caused by the touch gesture for user authentication. In
[10], the authors leveraged unique gait patterns derived
from acceleration readings in mobile healthcare systems to
detect possible user spoofing attacks. The authors in [11]
used a smartphone-based accelerometer to capture gait data
continuously in the background for a smartphone-based
gait authentication system. In [12], the authors proposed
an agile algorithm to extract gait-specific features in a Wi-
Fi-based human identification system. The authors in [13]
leveraged Photoplethysmography (PPG) sensors in wrist-
worn wearables to extract individual characteristics of clean
heartbeat signals from PPG signals for a novel mobile two-
factor authentication system. In [14], the authors utilized
the inherent correlation between sounds and chest motion
caused by deep breathing for heart sound-based authenti-
cation. The authors in [15] leveraged the distinctive chest
motions during speaking to establish a secure multi-factor
authentication system.

Although these behavioral biometrics are effective and
efficient on specific wireless devices, we exploit the ac-
celerometer, gyroscope and magnetometer sensors built-in
modern phones to capture users’ behavioral patterns im-
plicitly. Compared with these behavioral biometrics-based
authentication systems, ADFFDA generates additional sen-
sor data to strengthen CNN training and fuses data from
multiple sensing modalities to enhance feature represen-
tation, thereby significantly improving the authentication
performance with a mean EER of 0.01% (Table 9).

9.2 Data Augmentation in Authentication Systems

In order to address the limited training data issue for
authentication systems, data augmentation approaches have
been exploited for generating additional training data to im-
prove the authentication accuracy. Specifically, the authors
in [56] utilized a variety of data augmentation techniques
including shift up+zoom, mirror, blur, equalize histogram,
darken, brighten, inject noise for periocular image augmen-
tation in a CNN-based periocular authentication system. In
[57], the authors exploited the augmentation techniques of
permutation, scaling, and jittering to produce four different
deformations from an original signal sample, increasing the
number of samples of each training user in a continuous
authentication through gait analysis. The authors in [16]
utilized five data augmentation approaches, i.e. permuta-
tion, sampling, scaling, cropping and jittering, to gener-
ate additional sensor data in a smartphone-based contin-
uous authentication system. In [17], the authors augmented
behavioral biometric features of HMOG including hand
movement, orientation, and grasp with tap characteristics in
continuous smartphone authentication, which considerably
improved authentication performance. The authors in [58]
transformed the landmark pixel coordinates in one camera
to any new camera pose to create synthesized training
samples for an acoustics and vision based authentication
system. In [59], the authors used three data augmentation
approaches, i.e. the conditional Wasserstein GAN, selective
VAE, and selective WGAN to augment EEG data for emo-
tion recognition enhancement. The authors in [18] exploited
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a multiscale and multidirection GAN (MSMDGAN) for data
augmentation in a CNN-based single palm-vein identifi-
cation. In [24], the authors used a conditional Wasserstein
GAN (CWGAN) consisting of a CNN-based generator and
a CNN-based discriminator for data augmentation in a
smartphone-based continuous authentication system.

Different from the aforementioned data augmentation
approaches in authentication systems, we are the first to ex-
ploit a transformer based-GAN composed of a transformer-
based generator and a CNN-based discriminator to gen-
erate sensor data for a mobile continuous authentication
system. In comparison with these data augmentation based
authentication systems, ADFFDA shows the superiority by
reaching the lowest EER of 1.62% on data size of 700 (Table
6).

9.3 Feature Fusion in Authentication Systems

In order to improve the feature efficiency in authentication
systems, feature fusion strategies have been utilized to
enhance the feature representation. Concretely, the authors
in [60] fused user data from the keyboard, mouse, and
graphical user interface interactions, which resulted in a
more accurate authentication result according to a broader
view of the user’s computer activity in a behavioral bio-
metric system. In [61], the authors concatenated the gait
and keystroke feature vectors that were normalized by the
Min-Max normalization technique to a single feature vector
in a continuous smartphone authentication method. In [28],
the authors utilized two feature fusion strategies, serial
and parallel, to concatenate the selected features from the
accelerometer, gyroscope, and magnetometer sensors in a
continuous smartphone authentication system. The authors
in [26] exploited a local feature fusion to the ECG and finger
veins using an updated version of canonical correlation
analysis in a multimodal authentication system. In [29],
the authors developed a deep feature fusion network that
applied maxout units into CNNS to generate a compact
representation for each modality and then concatenated the
discriminative features of iris and periocular with weights.
The authors in [27] utilized a balanced feature concatenation
strategy to fuse a fixed-number deep features from the
accelerometer and gyroscope on smartphones in a CNN-
based continuous authentication system.

Although the aforementioned feature fusion strategies
do improve authentication systems, we differ in that we
propose an adaptive-weighted concatenation method to
fuse CNN-extracted features from the accelerometer, gy-
roscope and magnetometer sensors, which has led to a
much more effective feature representation, as shown by
our experiments. Compared with these feature fusion based
authentication systems, ADFFDA surpasses them with the
highest accuracy of 99.12% (Table 8).

10 CONCLUSION

In this paper, we have presented ADFFDA, a novel and
mobile continuous authentication system using an adaptive
deep feature fusion scheme for effective feature representa-
tion and a transformer-based GAN for data augmentation,
leveraging the accelerometer, gyroscope and magnetometer

sensors on smartphones. When a user operates on smart-
phones, ADFFDA utilizes the designed CNN to extract deep
features from the normalized sensor data. It then employs
an adaptive-weighted concatenation scheme to fuse the
deep features. Finally, it authenticates the user by the trained
OC-SVM classifier. We have evaluated ADFFDA through
extensive experiments and the experimental results show
that ADFFDA is able to authenticate users efficiently, and
obtains, by far, the lowest EER w.r.t representative works
of the state-of-the-art. ADFFDA achieves the superior per-
formance, it, however, highly relies on user behaviors, such
as finger touch, gesture, and wrist motion, in the training
phase. If new behaviors occur in the testing phase, ADFFDA
will not work well.
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