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Abstract—An adversarial example is a specially-crafted ex-
ample with subtle and intentional perturbations that causes a
machine learning model to make a false classification. A plethora
of papers have proposed to use filters to effectively defend
against adversarial example attacks. However, we demonstrate
that the filter-based defenses may not be reliable in this paper.
We develop AEDescaptor, a scheme to escape the filter-based
defenses. AEDescaptor uses a specially-crafted policy gradient
reinforcement learning algorithm to generate adversarial exam-
ples even if the filters are used to interrupt the backpropagation
channel (that is used in traditional adversarial example attack
algorithms). Furthermore, we design a customized algorithm to
reduce the possible action space in policy gradient reinforcement
learning to accelerate AEDescaptor training while still ensuring
that AEDescaptor generates successful adversarial examples. The
intensive experiments demonstrate that AEDescaptor-generated
adversarial examples have good performance (in terms of success
rate and transferability) to escape the filter-based defenses.

Index Terms—Adversarial Examples, Image Classification, Re-
inforcement Learning, Filter

I. INTRODUCTION

In the past decade, with the explosive growth of data, the
traditional machine learning (ML) methods cannot make full
use of big data and fail to provide ML models with superior
performance. Deep learning, as a new research direction in
the field of ML, has significantly improved performance over
traditional ML. Therefore, it has been widely used in image
classification [1], [2], semantic segmentation [3], [4], object
detection [5], [6], and so on. Image classification is one of the
most popular applications of deep learning. Some security-
critical applications highly rely on image classification tech-
niques. For example, autonomous driving vehicles employ
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images captured by cameras to classify road traffic signs (such
as Stop signs and Speed Limit signs).

However, recent research has shown that deep neural net-
work is easy to be fooled by adversarial examples (AEs)
in image classification tasks. An adversarial example is a
specially-crafted example with subtle and intentional pertur-
bations that causes a machine learning model to make a false
classification. Because the perturbations are very slight, the
adversarial example is visually similar to the original image,
so it is hard to be distinguished by human eyes. The above
attack is called adversarial example attack in this paper. The
adversarial example attack may lead to catastrophic damage
to the victim. For instance, it has been demonstrated that an
adversarial example attack could cause a classifier to interpret
a subtly-modified physical Stop sign as a Speed Limit 45 sign
[7]. Thus, in reality, such an attack may lead to serious traffic
accidents for autonomous driving vehicles.

To defend the adversarial example attacks, researchers have
proposed many methods. These methods can be roughly di-
vided into two categories: (1) filter-based defense method [8],
[9] and (2) AE-detectable networks [10], [11]. The filter-based
defense method defends AE by using filters on model inputs
without requiring any changes on the original ML model. On
the contrary, the second method incorporates the AE-detection
functionality into the ML model, so the original ML model
needs to be redesigned and retrained. Compared with the
second method, the filter-based defense method requires less
computation and eliminates the requirements for modifying
the original ML models. Thus, the filter-based defense method
has been widely studied in a large amount of papers (e.g., [8],
[9], [12]-[17]). Many of these papers have demonstrated the
effectiveness of the filter-based method, making it a popular
defense against AE attacks.

In this paper, we focus on the filter-based defense method.
We consider two types of filter-based defense methods: (1)
the series-filter-based defense method and (2) the parallel-



filter-based defense method. (1) The series-filter-based defense
method simply feeds the input to multiple series-connected
filters before forwarding it to a ML model. The intuition
underlying this method is that the adversarial perturbed pixels
are likely to be noisy pixels in an image. Hence, multiple
series-connected filters with image denoising functionality
would remove the perturbed pixels, and hence, the AE attack
can be defended. (2) The parallel-filter-based defense method
is first proposed in [9]. The key idea of this method is to
compare the softmax output vector (at the last layer of the ML
model) on the original image with the softmax output vector
on the image after being filtered. If the two output vectors
have a substantially longer distance, the image is likely to be
an adversarial example. By calculating the distance between
softmax output vector and selecting a specific threshold, this
method can accurately detect adversarial examples. In this
paper, we aim to answer the following question: is it possible
to develop an AE generation method to escape filter-based
adversarial example defense? Unfortunately, our study yields a
positive answer “Yes” to the question. We propose AE Defense
escaptor (AEDescaptor) to generate AEs to escape the filter-
based defense methods. There are three technical challenges
in AEDescaptor design.

First, it is challenging to design an AE generation algorithm
in the presence of filters. The traditional gradient-based AE
attacks use the backpropagation algorithm [18] [19] [20] to
back-propagate gradients to the input space for generating
AE. However, if a non-differentiable filter is pre-pended to
the ML model, then the backpropagation channel is inter-
rupted, making the traditional gradient-based AE generation
algorithms infeasible. To address this challenge, we use the
reinforcement learning (RL) method (with a properly designed
reward function) to directly train AEDescaptor. Thus, the
requirement for gradient propagation passing through a filter
is eliminated.

Second, it is challenging to accelerate AEDescaptor training
while still ensuring the proper functionality of AEDescaptor.
An image usually contains many pixels and each pixel has
many possible values, indicating that there is huge search
space for AEDescaptor training. If the search space is too
large, then the training time consumption is prohibitively
long. To reduce the training time, we decrease the possible
action space in each epoch of training. The action for one
pixel is restricted to only two possible operations: flip or
stay unchanged. In this way, the AEDescaptor training is
significantly accelerated.

Third, it is challenging to keep the AEDescaptor-generated
AEs to be as close as possible to the original examples so that
they are hard to be noticeable by human eyes. To handle this
challenge, we add a penalty term in the reward function to
minimize the number of pixels modified while still ensuring
that the AEDescaptor-generated AEs are misclassified. Our
method ensures that the AEDescaptor-generated AEs are vi-
sually similar to their original images as much as possible.

In summary, this paper makes three main contributions.

« We make the first step to demonstrate that the filter-based

TABLE I
NOTATIONS
[ Notation | Meanings
a Action
s State
r Reward
X0 Original example
X Adversarial example
Yt The softmax output vector at last layer of X*
r The policy matrix
P The probability matrix
C The confidence of X is classified as the target label
Dz The disagreement of softmax output vector at last layer

The policy network’s parameters

n The number of classes

The probability that X* is classified as class label i
The pixel value of the i-th row and j-th column in X*
The element of the i-th row and the j-th column in a®
The element of the i-th row and the j-th column in P?
Vij The element of the i-th row and the j-th column in T'¢
The probability of taking action at in the state st
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Fig. 1. How the series-filter-based defense works

adversarial example defense can be escaped by using RL
to generate AEs. The proposed approach can undermine
the validity of a type of popular AE attack defense.

o We design a customized algorithm to reduce the pos-
sible action space in policy-gradient RL to speed up
AEDescaptor training while still ensuring AEDescaptor
to generate successful AEs.

e Our intensive experimental results show that
AEDescaptor-generated AEs have a 100% attack
success rate on different filter parameters for both series-
filter-based defense and parallel-filter-based defense.
Besides, the generated adversarial examples have good
cross-model transferability.

II. ESCAPING THE SERIES-FILTER-BASED DEFENSE

In this section, we first have the problem description.
Then, we introduce our approach to escape the series-filter-
based defense in detail. The frequently used notations are
summarized in Table I.

A. Problem Description

Figure 1 shows how the series-filter-based defense method
works. It simply feeds the input to multiple series-connected
filters before forwarding it to the ML model. The intuition
underlying this method is that the adversarial perturbed pixels
are likely to be noisy pixels in an image. The filters (e.g.,
median filter, bit depth filter) are usually capable of image de-
noising. Hence, once the noise is removed from an image, the
image can be classified correctly again. Our goal is to design
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Fig. 2. Use AEDescaptor to escape the series-filter-based defense

AEDescaptor to generate specially-crafted adversarial exam-
ples. It is expected that the generated adversarial examples,
after being filtered, can still lead to model misclassification.
Given an input, the output of the ML model is assumed to
be available. However, the knowledge of ML model details
(e.g., network depth, network parameters) is not required.
Thus, the AEDescaptor-based attack is a black-box attack.
In this section, we consider the defense that uses two series-
connected filters for preprocessing the input images. Note that
AEDescaptor can be extended to escape the defense where
more filters are series-connected.

B. Policy Gradient RL

Policy gradient, as a policy-based RL algorithm, can di-
rectly output the probability of each action and update policy
parameters by continuously calculating the gradient of policy
expected reward, and finally converges to the optimal policy
[21]. Specifically, the policy gradient uses reward r to directly
enhance or weaken the possibility of choosing action a.
Good action will increase the probability of being selected
next time, whereas bad action will weaken the probability
of being selected next time. Based on the reward r, the
policy network’s parameters 6 is optimized by the formula
L(0) = —> logmy(s,a)r, where L(-) is the loss function
and my(s,a) is the probability of taking action a in the state
S.

C. AEDescaptor Design

Figure 2 shows how AEDescaptor works. AEDescaptor
adopts the policy gradient algorithm to generate adversarial
examples with the goal of escaping the series-filter-based de-
fense. Compared with the value-based RL method, the policy
gradient algorithm is effective in high-dimensional space or
continuous action space, has better convergence, and can learn
random policy.

In AEDescaptor, we use an m x n matrix X° to represent
the original image. Each element of the matrix denotes a pixel
in the image. Each pixel is a real number in [0,1]. Let z;
represent the pixel in the i-th row and j-th column of X°. Let
0 represent the policy network’s parameters. Let vfj represent
the element in the i-th row and j-th column of I'*. Let pf.
represent the pixel in the ¢-th row and j-th column of P*.
Giving an input X, a policy network outputs an m X n
policy matrix I'* at the ¢-th training epoch. Each entry in I'?
represents a probability. According to I'?, the action generation

(ActGen) algorithm can output an m x n action matrix a’ and
an m X n probability matrix P! at the ¢-th training epoch.
It holds that af; = 1 with ~}; probability and a}; = 0 with
1 — ~j; probability. If af; = 1, then p}; = ~};; otherwise,
pi; = 1 —~};. Then, X* is computed by using

la? — X = X, (1)

Next, X*? is forwarded to the filters and the value network to
get a softmax output vector Y* = {y},v4, ...yl }, where y!
represents the probability that X? is classified as class label i
and n is the number of classes. This vector Y* can be used to
compute a reward r, which can be applied to train the policy
network. To facilitate description, several terminologies are
defined as follows.

« State. Suppose that there are n training epochs. The state
can be represented by {X, .- | X"}. Let the s represent
the ¢-th state X?;

o Action. Action is defined as an m x n matrix a’ (named
action matrix). It holds that z{; = l|a}; — xf;[. Or
equivalently, x}; = a¥; if af; = 0 and zf; = 1 — a;
if afj =1.

o Reward. Reward is used to measure the benefits of taking
an action. Let 1 represent the reward of taking action a’
in state s’.

Reward Design. The reward is designed as a weighted sum
of the two factors f; and f5. The first factor measures the
ability to escape the series-filter-based defense. It is described
as f1 = Ylarget — Ybruer Where ylo,.... is the probability
that X' is classified as target class label, and y!,,. is the
probability that X! is classified as true class label. The larger
f1, the larger the reward. The second factor measures the
degree of indistinguishability to human eyes. It is described as
fo = lla’llo = >, ; a;. The larger f, the smaller the reward.
Therefore, the reward r' is defined as

rt = y;larget - yittrue - ﬂ”ath (2)

where 3 is a hyperparameter to balance attack performance
and the number of perturbations. Note that using this reward
implies this is an Lg attack since it uses the Ly norm to
measure the degree of modification.

D. AEDescaptor Training

Next, we introduce how the policy network is trained
according to the reward. The training procedure is shown in



Algorithm 1 AEDescaptor Training to Escape the Series-filter-
based Defense

Input: Input image X°, Policy network’s parameters ;
Output: Adversarial example X;

1: Randomly initialize the policy network’s parameters 6°;

2: Normalize the pixel value of X° to be between 0 and 1

3: for epoch t =1,2,... do

4:  Feed X" into the policy network;

5:  The policy network outputs an m X n policy matrix I'?;

6:  According to I'?, the ActGen algorithm outputs an mxn
action matrix a’ and an m x n probability matrix P?;

7:  Modify the pixels of the image X according to action
a’ matrix by using Equation (1);

8:  Input the generated example X? into the value network
to get a softmax output vector Y! = {yt, v, ...yl } at
last layer;

9:  Calculate reward r’ according to Equation (2);

10:  Update the policy network’s parameters 0: '+ < 0! 4
aVye log ma: (st, al)rt;

11: end for

12: return X?;

Algorithm II-D. First, in lines 1-2, AEDescaptor initializes
policy network parameter ° and inputs image X°. At the ¢-th
training epoch, the input image X© is fed into policy network
to generate policy matrix I'*(lines 4-5). According to I'?, the
ActGen algorithm outputs action matrix a® and probability
matrix P¢(line 6). Next, AEDescaptor modifies the pixels of
the image X° according to action a‘ by using Equation (1)
(line 7). Then, X! is forwarded to the value network to get
a softmax output vector Y at last layer, and Y? is used to
calculate reward 1* according to Equation (2) (lines 8-9). Last,
in line 10, the policy network’s parameters #° is updated by
the reward 1* as

01« 0" + Vg log mg: (st al)rt, 3)

1

where 7y (s*,a") = ——

rate.

After multiple epochs of training, AEDescaptor can finally
output an optimized action to generate an adversarial example
X visually close to the input image X as much as possible.
Meanwhile, the adversarial example can escape the series-
filter-based defense.

We have two remarks about Algorithm II-D. First,
AEDescaptor introduces ActGen to make the action matrix
be a binary matrix. This can help to significantly reduce
the search space during training. Second, Equation (3) is
used to update the policy network’s parameters, such that the
generated action can gradually increase the expected reward.

> Zj pﬁj and « is the learning

III. ESCAPING THE PARALLEL-FILTER-BASED DEFENSE

In this section, we first have the problem description. Then,
we introduce our approach to escape the parallel-filter-based

defense in detail.

A. Problem Description
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Fig. 3. How the parallel-filter-based defense works
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Figure 3 reveals the working principle of the parallel-
filter-based defense method. It works by detecting the ad-
versarial examples. The intuition of this solution is that the
model’s softmax output vectors on the original example and
the example after being filtered should be similar. In other
words, if the original example and the example being filtered
produce substantially different softmax output vectors, this
example is likely to be adversarial. This solution compares
the model’s softmax output vector on the input image with its
softmax output vectors on the image being filtered by different
filters, and then calculates the disagreement between every two
vectors. Let Y; represent the softmax output vector of the
model for the original image, Y- represent the softmax output
vector of the model for the image being filtered by Filterl,
and Y3 represent the softmax output vector of the model for
the image being filtered by Filter2. The disagreement can be
measured by L; norm:

DiS(Yl,Yg) = ||Y1 — Y2||1. (4)
We define D, as

Do = max{Dis(Y1,Y3),Dis(Y2,Ys),Dis(Y1,Y3)}.

(&)
If Dy, is greater than a specific threshold, this image is
likely to be an adversarial example. Our goal is to design
AEDescaptor to generate adversarial examples that can escape
the parallel-filter-based defense. Given an input, the softmax
output vector of the ML model is available. The knowledge
of ML model details is not required.

B. AEDescaptor Design

As is shown in Figure 4, AEDescaptor adopts policy
gradient algorithm to generate specific adversarial examples
which can escape the parallel-filter-based defense. Given an
input X°, the policy network outputs an m x n policy matrix
It at the t-th training epoch. Each entry in I'* represents a
probability. According to T', the action generation (ActGen)
algorithm can output an m X m action matrix a’ to generate
adversarial example X¢. Then, X! is forwarded to the value
network to get a softmax output vector Yi. X! is also
forwarded to filter]l and then is forwarded to the value
network to get a softmax output vector Y5. Meanwhile, X'
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Fig. 4. Use AEDescaptor to escape the parallel-filter-based defense

is forwarded to filter2 and then is forwarded to the value
network to get a softmax output vector Y. These softmax
output vectors can be used to compute a reward r‘, which
can be applied to train the policy network.

Reward Design. The reward is designed as a weighted sum
of the two factors f3 and f4. The first factor is described as
3 = — Z?:l 1Y!E — Yiarget|l1, where Yigrger is the target
softmax output vector. The second factor measures the number
of pixels modified by AEDescaptor. It is described as f; =
la‘||o. Therefore, the reward r’ is defined as

3
==Y 1Y = Yiargeels = 8l1a’llo, (6)

i=1
where § is a hyperparameter to balance attack performance
and the number of perturbations. If all of Y! are closer to the
Yiarget, then the reward is larger. The larger f3 also leads to
a smaller D,,q,. The smaller D,,,, can help to escape the

parallel-filter-based defense.

C. AEDescaptor Training

Next, we introduce how the policy network is trained
according to the reward. The training procedure is shown in
Algorithm TII-C. Different from Algorithm 1, in lines 8-9, X*
is forwarded to three value networks to get three softmax
output vectors Y, Y? and Y3, and then reward 1’ can be
calculated according to Equation (6).

After multiple epochs of training, AEDescaptor can finally
output an optimized action to generate an adversarial example
X which can make the model get the wrong prediction.
Meanwhile, the D,,,.. is still less than the selected threshold,
so as to escape the parallel-filter-based defense.

IV. EXPERIMENTS

In this section, we evaluate the performance of AEDescaptor
against the series-filter-based defense and the parallel-filter-
based defense.

A. Setup

Dataset. MNIST dataset [22] is used in experiments. It
consists of 60,000 training images and 10,000 test images,

Algorithm 2 AEDescaptor Training to Escape the Parallel-
filter-based Defense

Input: Input image X", Target softmax output vector Y sayget
Policy network’s parameters 6;
Output: Adversarial example X;
1: Randomly initialize the policy network’s parameters 6°;
2: Normalize the pixel value of X° to be between 0 and 1
3: for epocht =1,2,... do
4:  Feed XY into the policy network;
5. The policy network outputs an m X n policy matrix I'?;
6:  According to I'?, the ActGen algorithm outputs an m xn
action matrix a® and an m x n probability matrix P?;
7. Modify the pixels of the image X° according to action
a’ matrix by using Equation (1);
8: Input the generated example X* into three value net-
works to get three softmax output vectors Y, Y2, and
Y3
9:  Calculate reward r* according to Equation (6);
10:  Update the policy network’s parameters 6: 01 < 9t +
aVg: log me: (st, al)rt;
11: end for
12: return X¢;

Different B N/A 0.02 0.03
Prediction
Different B 0.04 0.05 0.06 0.07 0.08

E

Fig. 5. AEDescaptor-generated adversarial examples on different 5 values

Prediction



TABLE 11
POLICY NETWORK ARCHITECTURE
[ Layer Configuration |
Convolution+ReLU+BatchNorm 3x3 x 32
Convolution+ReLU+BatchNorm 3x3 X 64
Convolution+ReLU+BatchNorm 3x3 x 128
Convolution+ReLU+BatchNorm 3x3 x 128
Convolution+ReLU+BatchNorm 3x3 x 64
Convolution+ReLU+BatchNorm 3x3 x 32
Convolution+ReLU+BatchNorm 3x3 x 16
Convolution+BatchNorm 3x3 x 2
Softmax 2

and each image is a handwritten grey-scale digital image with
28 x 28 pixels.

Policy Network Architecture. Table II shows the architecture
of the policy network. In the policy network, the input size
is 1 x 28 x 28, and the output size is 2 x 28 x 28. The
policy network consists of convolutional layers and batch
normalization layers. The kernel size in convolutional layers
is 3.

Value Network Architecture. The adopted value network is
the conventional neural network (CNN) used in the Cleverhans
library [23]. This network is named CleNet in this paper. It
has 4 layers and is optimized by using Adam with a learning
rate of 0.0001. The epoch is 500 and the batch size is 64.
Filters. We use two kinds of filters with different parameters
for experiments, including median filter and bit depth filter.
The median filter is used to calculate the median of several

Hard attack cases

Hen

Easy attack cases

rlémal exa iles

Original 2
AEs serles)
Target 3 6 9

AEs iiarallelé

Target 3 6 9

(a) Filterl (kernel size = 3) + Filter2 (bit depth = 1)

neighboring pixels of a certain pixel. The calculated median
is used to replace the original pixel. A sliding square window
is usually used to identify the neighboring pixels. The length
of the square windows is called kernel size. The bit depth
filter is used to compresses the image to a specific bit depth.
For example, each pixel of an 8-bit depth gray-scale image
in MNIST dataset has 2% = 256 possible values, where 0 is
totally black, 255 is totally white, and other values represent
varying degrees of gray shading.

Metrics. We consider two groups of test cases. The first
group is easy attack cases (2—3, 5—6, 8—9). 2—3 means
the original label is 2, and the target label (that AEDescaptor
aims to mislead model to classify) is 3. The second group
is hard attack cases (1—0, 4—6, 6—7). The performance
of AEDescaptor against both the series-filter-based defense
and the parallel-filter-based defense are measured. For the
series-filter-based defense, we use the confidence C (i.e., the
probability of an input image is classified as the target label in
an adversarial example attack) to represent the AEDescaptor’s
performance. For the parallel-filter-based defense, we use
Do (Equation (5)) to represent the AEDescaptor perfor-
mance. In case of a successful AE attack, the smaller D,,, 4,
the higher AEDescaptor’s performance.

B. AEDescaptor Performance on different (3

First, we test the performance of hyperparameter [ in
the generation of adversarial examples. The kernel size
of the median filter is set to 3. The bit depth of the
bit depth filter is set to 1. In Figure 5, adversarial ex-
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Fig. 6. AEDeacaptor-generated adversarial examples on four different filter parameter settings



amples generated by AEDescaptor are shown at f =
{0,0.01,0.02,0.03,0.04, 0.05,0.06,0.07,0.08}. It should be
noted that the first example with N/A is an original example
labeled 2 rather than a generated adversarial example.

We observe that, compared with the original example, the
generated adversarial example with 5 = 0 has large number
of perturbations. As the hyperparameter 3 becomes larger,
the generated adversarial example is closer to the original
example, which still makes the model get wrong predictions.
When [ is greater than 0.08, the perturbation added to the
original example disappears and the adversarial attack fails.

In conclusion, the hyperparameter 3 has a significant effect
on balancing attack performance and the number of perturba-
tions.

C. AEDescaptor Performance on Different Filter Parameters

We test the performance of AEDescaptor under different
filter parameter settings. The kernel size of the median filter
is set to 3 and 5. The bit depth of the bit depth filter is set
to 1 and 3. Therefore, there are four types of combinations of
filter parameter settings.

The experimental results are shown in Figure 6. The first
row exhibits the original images. The second row shows the
adversarial examples generated by AEDescaptor in series-
filter-based defense case. The third row shows the adversarial
examples generated by AEDescaptor in parallel-filter-based
defense case. The number below each adversarial example
represents the target label.

We have two observations. First, AEDescaptor can success-
fully generate adversarial examples to escape both the series-
filter-based defense and the parallel-filter-based defense. The
attack success rate is 100%. If only a machine-based automat-
ically filter-based defense system is deployed, AEDescaptor
can circumvent such defense system. Second, there is at least
one attack case (i.e., 2 — 3) that the adversarial examples are
hard to be noticed by humans eyes. In other five attack cases,
the adversarial examples have relatively large modifications
(over the original examples). They may be detected by humans
eyes. Note that manual check by eyes is usually impractical
in real-world applications (especially for large datasets). Even
if there are one-by-one manual adversarial example checks,
AEDescaptor may still escape the filter-based defense when
launching some easy attack cases. In a nutshell, AEDescaptor
significantly undermines the validity of filter-based defenses.

D. Transferability

It has been noted that some adversarial examples generated
for model A may also be misclassified by another model B
(that has the same function as model A). Such a property
is referred to as cross-model transferability, which can be
used to perform black-box attacks. In this experiment, we use
AEDescaptor trained over CleNet and test its transferability
on other three popular classifiers (LeNet [24], AlexNet [25],
and VGGNet [26]).

o LeNet. The LeNet network has 7 layers. Its architecture
can be found in [24]. It is trained by using stochastic

gradient descent (SGD) with a learning rate of 0.001.
The epoch is 100 and the batch size is 64.

o AlexNet. The AlexNet network has 8 layers. Its archi-
tecture can be found in [25]. It is trained by using SGD
with a learning rate of 0.001. The epoch is 100 and the
batch size is 64.

e VGGNet. The VGGNet network has 16 layers. Its archi-
tecture can be found in [26]. It is trained by using Adam
with a learning rate of 0.001. The epoch is 100 and the
batch size is 64.

Tables III-VIII show the transferability performance of
AEDescaptor-generated adversarial examples on different clas-
sifiers. S means the series-filter-based defense case. If the
confidence of the target label is the largest among all labels,
then the attack succeeds. P means the parallel-filter-based
defense case. If the disagreement D, is less than a specific
threshold 0.3076 (as used in [9]), then the attack succeeds. N/A
indicates that the prediction label of the adversarial example is
inconsistent with the target label, so the attack fails. We find
that in the series-filter-based defense case, most AEDescaptor-
generated AEs succeed, and they have high confidence C.
In the parallel-filter-based defense case, most AEDescaptor-
generated AEs can mislead the model, and the corresponding
D gz 1s very small.

Table IX shows that AEDescaptor-generated adversarial
examples trained using CleNet have a 100% attack success
rate on itself. The attack success rates on other three classifiers
are 16.67%-66.67%. All successful attacks have high averarge
confidence C (i.e., > 98.71%) and relatively small average
D (£0.178). It can be observed that the deeper the clas-
sifier, the lower the attack success rate (i.e., the lower cross-
model transferability capability). In summary, AEDescaptor
has a good cross-model transferability capability, especially
on non-deep classifiers.

V. RELATED WORK

In this section, we review the state-of-the-art in adversarial
example attacks, adversarial example defenses, and reinforce-
ment learning, respectively.

Adversarial Example Attacks. The concept of adversarial
example is first proposed by Szegedy et al. [27]. According to
different threat models, adversarial example attack algorithms
can be divided into white-box attacks [18], [28], [29] and
black-box attacks [30], [31]. White-box attackers can obtain
network model structure, parameters, defense mechanism, and
sometimes even training set. Black-box attackers can only ob-
tain the corresponding output according to the neural network
input, without the knowledge of the structure and parameters
of the network model. In white-box attack cases, Goodfellow
et al. [18] apply linear features to nonlinear models and
propose the fast gradient sign method (FGSM). Carlini and
Wagner [28] propose three optimized C&W attack algorithms
of Lo, Ly and L., which can achieve an almost 100% attack
success rate. Kurakin et al. [29] propose basic iterative method
(BIM), which is an extension of FGSM that divides single
step into small steps to iteration. Chen et al. [30] propose a



TABLE III

ATTACK CASE (2 — 3)

TABLE IV

ATTACK CASE (5 — 6)

TABLE V

ATTACK CASE (8 — 9)

Adpversarial

Adversarial

Adversarial

Succeed? Succeed? Succeed?
example example example

CleNet |5 | €=99.99+% 4 VNet S | C=99.99+% v CleNet |8 |_C=99.99+% v
P Dmaaczo / P Dmaw=0 / P Dmaw=0 /

LeNet LS | C=99.99+% v LeNet LS C=2.12% X LeNet LS C=99.94% v
P Dmaz:O / P Dmaz:O-OOOS / P DmaI:00963 /

AlexNet LS| C=99.99+% v AlexNet LS C=94.49% v AlexNet LS | C=99.99+% v
P Dmaxzo / P Dmaac=0~271 8 / P N/A X

VGGNet |8 | €=0.04% X VGGNet 1S C=0% X VGGNet LS C=0.67% X
P N/A X P Dimaz=0 4 P N/A X

TABLE VI TABLE VII TABLE VIII
ATTACK CASE (1 — 0) ATTACK CASE (4 — 6) ATTACK CASE (6 — 7)
Adversarial Succeed? Adversarial Succeed? Adversarial Succeed?
example example example

CleNet |S_| C=99.99+% v VNet S| C=99.99+% v CleNet LS| C=99.99+% v
P Dmazzo / P Dmazzo / P Dmam=0 /

LeNet S | C=99.99+% v LeNet LS C=2.12% X LeNet LS C=99.94% v
P | Dpas=0 4 P | Dmaz=0.0005 v P | Dmar=0.0963 v

AlexNet |S_| C=99.99+% v AlexNet S C=94.49% v AlexNet S| C=99.99+% v
P | Dpmaz=0 4 P | Dyaa=02718 "4 P N/A X

VGGNet |8 | €=0.04% X VGGNet LS C=0% X VGGNet LS C=0.67% X
P N/A X P Dimaz=0 4 P N/A X

zero-order optimization method based on confidence. In black-
box attack cases, Su et al. [31] propose a single-pixel attack
based on a differential evolution algorithm, which iteratively
modifies single pixel to generates a sub image, and retains the
sub image with the best attack effect according to the selection
criteria to realize the adversarial attack.

Different from these works, this paper focuses on devel-
oping approaches to launch attacks in the presence of filters
prepended to ML model.

Adversarial Example Defenses. In recent years, researchers
have proposed many defense methods against adversarial
examples. Xu et al. [9] propose a defense method based
on filters to defense adversarial examples, and shows that
their method also has acceptable resistance to C&W attack
[28]. Xie et al. [32] develop a new convolution network
architecture, which includes a denoising module for feature
image denoising that can significantly improve the robust-
ness of the model. Mustafa et al. [33] propose an enhanced

TABLE IX
THE ATTACK SUCCESS RATES OF ADVERSARIAL EXAMPLES (TRAINED
OVER CLENET) ON FOUR CLASSIFIERS. AVG. C' MEANS THE AVERAGE
CONFIDENCE IN CASE OF SUCCESSFUL ATTACKS. AVG. Dnqe MEANS THE
AVERAGE D, qz IN CASE OF SUCCESSFUL ATTACKS

S P
Success rate [ Avg. C' | Success rate | Avg. Doz
CleNet 100% 99.99% 100% 0
LeNet 66.67% 98.71% 66.67% 0.0047
AlexNet 66.67% 99.65% 66.67% 0.1780
VGGNet 16.67% 100% 20.83% 0.0546

defense method based on super-resolution [34] and wavelet
denoising [35]. Sankaranarayanan et al. [36] present a novel
approach to regularize deep neural networks by perturbing
intermediate layer activations in an efficient manner. Akhtar
et al. [37] present the first dedicated framework to effectively
defend the networks against such perturbations, which learns a
Perturbation Rectifying Network (PRN) as ‘pre-input’ layers
to a targeted model, such that the targeted model needs no
modification. Raff et al. [38] explore the idea of stochastically
combining a large number of individually weak defenses into a
single barrage of randomized transformations to build a strong
defense against adversarial attacks.

In this paper, we aim to generate adversarial example to
escape the filter-based defenses.
Reinforcement Learning. In recent years, RL, as a branch of
machine learning, has been widely used in computer vision
[39], [40], parameter optimization [41], [42], robot control
[43], [44], etc. In 1989, Watkins et al. [45] proposed Q-
learning algorithm which is one of the most important algo-
rithms of reinforcement learning. Mnih et al. [46] combine
convolutional neural networks with Q-learning algorithm, and
propose deep g-network (DQN) model that is used to deal
with control tasks based on visual perception. The algorithms
described above are all value-based algorithms that need to
find the value function, and then select the action according
to the value function. Others are policy-based algorithms.
Sutton et al. [21] propose the policy gradient algorithm which
can directly approximate policy and optimize policy, and
finally, get the optimal policy. Silver et al. [47] propose an
effective deterministic policy gradient algorithm, which has



better performance in high-dimensional action space.

VI. CONCLUSION

In this paper, we have developed AEDescaptor to generate
adversarial examples to successfully escape both the series-
filter-based defense and the parallel-filter-based defense. The
key innovation of this paper is to use specially-crafted policy
gradient RL to generate adversarial examples even if filters
are used to interrupt the backpropagation channel (that is used
in traditional adversarial generation algorithms). Our intensive
experimental results show that AEDescaptor-generated adver-
sarial examples have good performance (in terms of success
rate and transferability) to escape filter-based defenses. Our
study has paved the way for subsequent research on RL-based
adversarial example generation.
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