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Mobile devices have been playing significant roles in our daily lives, which has made device security and
privacy protection extremely important. These mobile devices storing user sensitive and private information,
therefore, need rigorous user authentication mechanisms. In this paper, we present SearchAuth, a novel
continuous authentication system on smartphones exploiting a neural architecture search (NAS) to find an
optimal network architecture and an auto augmentation search (AAS) to more effectively train the optimal
network along with the best data augmentation policies, by leveraging the accelerometer, gyroscope and
magnetometer on smartphones to capture users’ behavioral patterns. Specifically, SearchAuth consists of three
stages, i.e. the offline stage, registration stage, and authentication stage. In the offline stage, we utilize the NAS
on sensor data of the accelerometer, gyroscope and magnetometer to find an optimal network architecture
based on the designed search space. With the optimal network architecture, namely NAS-based model, the
AAS automatically optimizes the augmentation of the input data for more effectively training the model that is
for feature extraction. In the registration stage, we use the trained NAS-based model to learn and extract deep
features from the legitimate user’s data, and train the LOF classifier with 55 features selected by the PCA. In
the authentication stage, with the well-trained NAS-based model and LOF classifier, SearchAuth identifies the
current user as a legitimate user or an impostor when the user starts operating a smartphone. Based on our
dataset, we evaluate the performance of the proposed SearchAuth, and the experimental results demonstrate
that SearchAuth surpasses the representative authentication schemes by achieving the best accuracy of 93.95%,
F1-score of 94.30%, and EER of 5.30% on the LOF classifier with dataset size of 100.
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and social computing devices; • Computing methodologies→ Neural networks.
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1 INTRODUCTION
With the rapid development of communication technologies, mobile devices have played a signifi-
cant role in our daily lives, which makes privacy protection in mobile devices extremely important,
since we prefer to store a lot of sensitive and private information on them. Even since 2011, sales of
smartphones have exceeded sales of personal computers [1]. However, due to the high-frequency
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usage and information interaction among these devices (e.g. smartphones, smartwatches, and
tablets), it is difficult to prevent personal information leakage and illegal access by the one-time
authentication. It identifies users only at the time of initial logging-in, such as personal identification
numbers (PINs), and fingerprints. The PIN is the most basic one-time authentication approach for
mobile devices compared to others, which faces a serious threat of online guessing and even longer
PIN only attains marginally improved security [2, 3]. Wang et al. systematically characterized
typical targeted online guessing attacks with seven sound mathematical models, each of which
was based on varied kinds of data available to an attacker [4]. Biometric information cannot be
acquired by direct covert observation, but once biological information is stolen, it is not naturally
available to reissue [5]. For example, fingerprint recognition can be cracked by people with ulterior
motives obtaining legitimate users’ fingerprints left on the screen. Therefore, there is a severe
security and privacy threat in one-time authentication mechanisms that impostors can easily gain
access to a mobile device when the legitimate user leaves the supervision of the device after the
initial authentication (e.g., the screen is unlocked).

Compared with traditional one-time authentication mechanisms, continuous or implicit authen-
tication approaches can provide an additional line of defense by designing a non-intrusive and
passive security countermeasure [6]. The current continuous authentication mechanisms essentially
use built-in sensors and accessories to frequently collect physiological or behavioral biometrics
to identify the legitimacy of users, such as voice [7], face patterns [8], touch gestures [9], typing
motion [10], and gait dynamics [11]. There are two main phases for continuous authentication
systems: user registration phase and continuous authentication phase. During the user registration
phase, owners of mobile devices are usually required to perform some operations on the devices
to collect biometrics to identify them. During the continuous authentication phase, the systems
collect the users’ sensor readings at their regular intervals to determine whether they are the
device owners. If the system finds that the current user is an impostor, it will lock the device to
prevent the owner’s privacy from leaking. The accelerometer, gyroscope, and magnetometer are
the most commonly used sensors for collecting behavioral biometrics without users’ notice. Both
the accelerometer and gyroscope are motion sensors that can monitor the users’ motion on the
devices, while the magnetometer records the users’ general environment. However, how to design a
lightweight and highly efficient continuous authentication model still faces challenges. On the one
hand, although deep neural networks have shown superiority on behavioral biometrics by learning
high-level representative features from input data and extracting discriminative features as the
outputs [12, 13], they are increasingly deeper and larger, and require more computation resource
with fixed architectures. Therefore, it is challenging to design a lightweight and accurate deep
model architecture for feature extraction. On the other hand, data augmentation methods, such as
flipping, cropping, color dithering [14, 15], and generative adversarial networks (GANs) [16, 17],
are very common techniques in the field of image recognition, which help to disclose unexplored
input space, prevent overfitting, and improve the generalization ability of classification models.
However, currently there are few data augmentation methods dedicating to time-series sensor data
because they are quite different from image data, and thus most of the current data augmentation
methods cannot be used to create time-series data directly. Therefore, it is also challenging to
collect a large amount of high-quality sensor data for model training, which costs lots of time and
computing resources. Overall, the challenges for current continuous authentication systems are
how to find an optimal model architecture for deep feature extraction, and how to search the best
data augmentation policies for model training.
To address the above challenges, we are among the first to utilize neural architecture search to

find an optimal network architecture for deep feature extraction and use the auto augmentation
search to more effectively train the optimal model along with the best data augmentation strategies.
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In this paper, we present SearchAuth, a neural architecture Search based continuous Authentication
on smartphones using auto augmentation Search, as an extension of our previous work [18]. In
SearchAuth, the user performs a wide operation based on typing gestures on a smartphone for user
authentication, which leverages the accelerometer, gyroscope and magnetometer on smartphones to
capture users’ behavioral patterns. Specifically, SearchAuth consists of six modules: data collection,
neural architecture search (NAS), auto augmentation search (AAS), feature extraction and selection,
classifier training, and authentication. The process of SearchAuth includes three stages of the offline
stage, registration stage, and authentication stage. Specifically, in the offline stage, SearchAuth
collects sensor data of the accelerometer, gyroscope and magnetometer on smartphones for the
NAS and AAS training. Using the preprocessed sensor data, SearchAuth exploits the NAS to search
an optimal deep network architecture, namely NAS-based model, with the designed search space
based on MobileNetV3 blocks, and utilizes the AAS to automatically optimize the augmentation of
the input data for more effectively training the NAS-based model with the designed augmentation
strategy search space. In the registration stage, SearchAuth utilizes the trained NAS-based model
to learn and extract deep features from the legitimate user’s data, and trains the local outlier
factor (LOF) classifier after 55 deep features are selected by the principal component analysis
(PCA). In the authentication stage, based on the sampled sensor data, SearchAuth uses the trained
NAS-based model to learn and extract features and utilizes the trained LOF classifier to conduct
the authentication based on the 55 PCA-selected features. Based on our dataset, we evaluate the
effectiveness of SearchAuth in terms of the feature number and classifier parameter, NAS-based
model, AAS, efficiency of optimal strategy, and comparison with representative schemes. The
experimental results demonstrate that the NAS-based model outperforms representative network
models by reaching the best accuracy of 92.08%, F1-score of 92.32%, and EER of 6.25% on the LOF
classifier with dataset size of 100 based on the original dataset, and SearchAuth surpasses the
representative authentication schemes by achieving the best accuracy of 93.95%, F1-score of 94.30%,
and EER of 5.30% on the LOF classifier with dataset size of 100, respectively.

The main contributions of this work are summarized as follows:

• We present SearchAuth, a neural architecture search based continuous authentication on
smartphones using auto augmentation search, leveraging the smartphone built-in accelerom-
eter, gyroscope and magnetometer to capture users’ behavioral patterns. SearchAuth consists
of six modules, i.e. data collection, neural architecture search, auto augmentation search,
feature extraction and selection, classifier training, and authentication.

• We utilize the neural architecture search to find an optimal network architecture for deep
feature extraction, and use the auto augmentation search to more effectively train the optimal
model along with the best data augmentation strategies. In addition, the NAS-based model is
used as the network model for the auto augmentation search.

• We evaluate the effectiveness of NAS-based model and the performance of SearchAuth, and
the experimental results illustrate that the trained NAS-based model reaches the highest
accuracy of 92.08% on the original dataset, and SearchAuth achieves the best authentication
accuracy of 93.95% on the LOF classifier with dataset size of 100 on our dataset, respectively.

The remainder of this work is organized as follows: Section 2 reviews the state-of-the-art on
continuous authentication. We elaborate the SearchAuth design in terms of the system overview,
data collection and preprocessing, the NAS and AAS, NAS-based feature extraction, and authenti-
cation with LOF classifier, respectively, in Section 3. In Section 4, we evaluate the performance of
SearchAuth, and we conclude this work in Section 5.
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2 RELATEDWORK
In this section, we review the state-of-the-art of the CNN-based continuous authentication systems
and data augmentation approaches in continuous authentication systems, respectively.

2.1 CNN-based Continuous Authentication Systems
In the field of continuous authentication, high-precision identification is often inseparable from effi-
cient and effective system architectures. Well-performed continuous authentication systems based
on specially designed deep neural networks have been creatively proposed. They can automatically
learn high-level representative features from input data and extract discriminative features as the
outputs. The main continuous authentication architectures are broadly composed of two phases:
the registration phase and authentication phase. During the registration phase, these systems
utilize CNNs with fixed architectures to extract deep features from the collected data and then train
classifiers with labeled features. During the authentication phase, they exploit the trained classifiers
to classify current CNN-extracted features as the legitimate user or impostors. The authors in [19]
used a Siamese CNN that learned a distance metric from a large dataset to extract deep features for
new user authentication in a mobile based continuous authentication system. In [12], the authors
exploited a deep learning autoencoder in a continuous biometric authentication system that relied
on user-specific motion patterns while interacting with the smartphone. The authors in [20] used
a deep recurrent neural network to capture the subtle motion signatures during password input
in a smartwatch authentication framework leveraging the unique motion patterns when users
entering passwords as behavioural biometrics. In [21], the authors proposed a reliable biometric
recognition schemes for mobile devices based on keystroke dynamics, by applying deep learning
technique of CNN to extract discriminative information from the typing behaviors of different
users. The authors in [22] utilized the LSTM-based architectures to process sequential sensory
data records for capturing the behavioral patterns of users when holding their smartphones in an
implicit continuous authentication system. In [23], the authors proposed a two-stream CNN for
feature learning in the continuous authentication system which was based on bottleneck structure
of MobileNetV2, with both time domain data and frequency domain data of the accelerometer
and gyroscope as the network inputs. The authors in [13] specially designed a lightweight CNN
based on the basic block of a bottleneck unit with depthwise convolution and down block of a basic
block for spatial downsampling to learn and extract discriminative deep features in a continuous
authentication system. In [18], the authors designed a CNN-based deep feature extraction method
consisting of feature learning and feature selection in a continuous authentication system on
smartphones with auto augmentation search.
Different from the aforementioned contributions, we utilize the neural architecture search to

automatically find an optimal network architecture for deep feature extraction in a continuous
authentication system.

2.2 Data Augmentation in Continuous Authentication Systems
In the field of data augmentation, high-quality and substantial sensor data can significantly improve
the accuracy of the continuous authentication systems. Data augmentation based on geometric
transformations has been widely used in the field of image recognition, such as permutation,
sampling, scaling, cropping, jittering, flipping and rotation. The authors in [14] were the first to use
geometric transformations of permutation, sampling, scaling, cropping and jittering as sensor data
augmentation approaches for Parkinson’s disease monitoring. However, the authors in [15] were
among the first to exploit five data augmentation approaches of permutation, sampling, scaling,
cropping and jittering in a continuous authentication system that created additional data by applying
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Fig. 1. SearchAuth Architecture.

the transformations on the training data. In [24], the authors exploited rotation data augmentation
to create additional data in a sensor-based user authentication system for continuously monitoring
users’ behavior patterns.

Data augmentation based on generative adversarial networks (GANs) has been used in the area
of time-series sensor data. The authors in [16] proposed an emotion classification system using data
augmentation with a cycle-consistent adversarial network (CycleGAN). In [17], the authors trained
a conditional Wasserstein generative adversarial network (CWGAN) on the electroencephalography
(EEG) data to generate additional data for data augmentation. The authors in [25] investigated
the possibility of using GANs to augment time-series Internet of Things (IoT) data. In [26], the
authors investigated five sequential data augmentation techniques (additional Gaussian noise,
masking noise, signal translation, amplitude shifting, and time stretching) including sample-based
and dataset-based methods to improve the intelligent fault diagnosis accuracy. The authors in [27]
employed a CWGAN to generate additional sensor data for data augmentation in a smartphone-
based continuous authentication system. In [28], the authors utilized a multiscale and multidirection
GAN consisting of multiple fully convolutional GANs, each of which is responsible for learning
the patch distribution within an image at a different scale and at a different direction for a single-
sample-per-person palm-vein identification.

Although these data augmentation approaches have been used in these representative continuous
authentication systems, we differ in that we are among the first to exploit the auto augmentation
search to find the best data augmentation policies along with a network model training in a
continuous authentication system.

3 SEARCHAUTH DESIGN
We elaborate the design of the neural architecture search based continuous authentication system
using auto augmentation search, SearchAuth, by leveraging the accelerometer, gyroscope and
magnetometer on smartphones to capture users’ behavioral patterns. In this section, we begin
with the system overview, then describe the data collection and preprocessing, detail the NAS and
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AAS, elaborate NAS-based feature extraction, and finally introduce the authentication with LOF
classifier.

3.1 System Overview
The key idea underlying our authentication system SearchAuth is to continuously authenticate
smartphone users leveraging the accelerometer, gyroscope and magnetometer to sense users’
operation on smartphones, where the neural architecture search (NAS) is exploited for finding
an optimal network architecture and the auto augmentation search (AAS) is utilized for more
effectively training the model along with the best data augmentation policies.
As illustrated in Fig. 1, SearchAuth consists of six modules, i.e. data collection, neural architec-

ture search, auto augmentation search, feature extraction and selection, classifier training, and
authentication. The process of SearchAuth includes three stages, i.e. the offline stage, registration
stage, and authentication stage. Specifically, in the offline stage, SearchAuth collects sensor data
of the accelerometer, gyroscope and magnetometer for the NAS and AAS training, where we
recruit volunteers to operate smartphones with sensor data collection tools. With the preprocessed
sensor data, SearchAuth exploits the NAS to find an optimal deep network architecture with the
designed architecture search space based on MobileNetV3 blocks. Then, SearchAuth utilizes the
AAS to automatically optimize the augmentation of the input data for more effectively training
the NAS-based model with the designed augmentation strategy search space. The AAS process is
embodied as a hyper-parameter learning problem while formulating the augmentation strategy as
a parameterized probability distribution. After AAS, the NAS-based model has been well-trained as
the network model for the AAS while the probability distribution converges. The trained NAS-based
model is used for the deep feature extraction in the registration stage and the authentication stage,
respectively. In the registration stage, SearchAuth uses the trained NAS-based model to extract
deep features after the same data preprocessing on a legitimate user’s samples, and trains the LOF
classifier after 55 deep features are selected by the PCA. In particular, the legitimate user is required
to operate on a smartphone to collect sensor data of the accelerometer, gyroscope and magnetome-
ter. Then, with the well-trained NAS-based model, SearchAuth performs data preprocessing, learns
and extracts deep features from the legitimate user’s sensor data and 55 deep features selected by
the PCA are then used to train the LOF classifier. In the authentication stage, with the sampled
sensor data for the current user, SearchAuth uses the trained NAS-based model to learn and extract
features and utilizes the trained LOF classifier to conduct the user authentication based on the 55
features selected by the PCA. If the user is a legitimate user, SearchAuth will allow the continuous
usage of the smartphone and meanwhile continuously authenticate the user; otherwise, it will
require the initial login inputs.
In addition, sensor-based continuous authentication on smartphones is an implicit process to

identify a user by extracting behavioral patterns, such as touch gesture and gait. However, the
above sensor-based continuous authentication is threatened by mimic attack. In this attack, an
adversary first observes the way that a legitimate user performs to pass the authentication, and
then practices to mimic the user’s behaviors for conducting the attack. Note that sensor-based
continuous authentication works on condition that user behavior can be sensed.

3.2 Data Collection and Preprocessing
In this section, we first introduce the data collection and then detail the data preprocessing.

3.2.1 Data Collection. The accelerometer captures coarse-gained motion patterns by measuring
the acceleration force. The gyroscope captures fine-grained motion patterns by measuring a device’s
rate of rotation. The magnetometer records a user’s general environment by measuring the ambient

ACM Trans. Sensor Netw., Vol. x, No. x, Article 1. Publication date: May 2023.



SearchAuth: Neural Architecture Search based Continuous Authentication Using Auto Augmentation Search 1:7

geomagnetic field [29]. The three sensors are widely equipped on the modern mobile devices.
Considering the above advantages, we select the accelerometer, gyroscope, and magnetometer to
collect the sensor data for our continuous authentication system.
In order to collect the sensor data for SearchAuth, we recruited 88 volunteers (44 male and

44 female) to operate on 10 Samsung Galaxy S4 smartphones, each of which was installed a
designed virtual keyboard. They were required to participate in 8 sessions, and they used the virtual
keyboard to answer 3 questions in each session. For each answer, they entered 250 characters at
least. During their operations, we collected data on the three axes of the accelerometer, gyroscope
and magnetometer with a sampling rate of 100𝐻𝑧 [30].

3.2.2 Data preprocessing. Since the collected raw sensor data are long time-series streams, we use
a sliding window to conduct non-repetitive sampling, each containing 2-second sensor data. In a
sliding window, each row represents the sampled sensor data, and each column indicates the 𝑥 ,
𝑦, and 𝑧 axes of a sensor. In order to enable the time-series sensor data to be used as the inputs
of a deep network with 𝑠ℎ𝑎𝑝𝑒 = (𝐶,𝐻,𝑊 ), we adaptively adjust the shape of the collected data.
Specifically, the three sensor data are regarded as three channels (𝐶), and the rows and columns
of the sliding window correspond to 𝐻 and𝑊 , respectively. Ignoring the error in the sampling
process and according to the sampling frequency, it can be inferred that 𝐻 = 200.
To simulate the data flow during the system running in a real environment, we divide the 88

volunteers into 68 legitimate users with 3000 windows 𝐿𝑈 3000×68 for the registration and offline
stages and 20 impostors with 3000 windows 𝐼𝑈 3000×20 for the authentication stage. In our experi-
ments, one of the legitimate users will be randomly-selected as the legitimate user 𝐿𝑈 3000

𝑙𝑒𝑔𝑖𝑡𝑖𝑚𝑎𝑡𝑒
in

the registration stage while the rest 67 users will be regarded as pre-collected data in the offline
stage. For the 68 legitimate users, the selected legitimate user with 1000 windows 𝐿𝑈 1000

𝑙𝑒𝑔𝑖𝑡𝑖𝑚𝑎𝑡𝑒
(from

𝐿𝑈 3000
𝑙𝑒𝑔𝑖𝑡𝑖𝑚𝑎𝑡𝑒

) is used for feature extraction, classifier training and testing while the rest 67 users with
100 windows 𝐿𝑈 100×67

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔
(from 𝐿𝑈 2000×67

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔
of 𝐿𝑈 3000×67) are used for the NAS training. Specifically,

𝐿𝑈 900
𝑙𝑒𝑔𝑖𝑡𝑖𝑚𝑎𝑡𝑒

(from 𝐿𝑈 1000
𝑙𝑒𝑔𝑖𝑡𝑖𝑚𝑎𝑡𝑒

) are exploited for deep feature extraction and then the classifier
is trained by the extracted features, and the rest 𝐿𝑈 100

𝑙𝑒𝑔𝑖𝑡𝑖𝑚𝑎𝑡𝑒
are used for classifier testing. We

repeat the above experiments until all the 68 users are selected as the legitimate user once for the
generality and generalization of our system. For impostors, 20 users with 1000 windows 𝐼𝑈 1000×20

𝑡𝑒𝑠𝑡𝑖𝑛𝑔

(from 𝐼𝑈 3000×20) are chosen as impostors’ testing dataset for feature extraction and classifier testing.
We calculate the mean value of evaluation metrics in all cases as the reported result. Next, 𝐿𝑈 100×67

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔

are fitted and transformed by RobustScaler in Python library sklearn.preprocessing, which ignores
outliers in the dataset. 𝐿𝑈 1000

𝑙𝑒𝑔𝑖𝑡𝑖𝑚𝑎𝑡𝑒
and 𝐼𝑈 1000×20

𝑡𝑒𝑠𝑡𝑖𝑛𝑔 are transformed by the same RobustScaler, so that
the three groups of data can be consistently normalized for data augmentation.

3.3 Neural Architecture Search
Different from architectures manually developed by human experts, NAS, the process of automating
architecture engineering, has been widely applied in image classification [31], object detection
[32] or semantic segmentation [33]. We are among the first to use NAS in model architecture
search for time-series data classification. In the NAS, a recurrent neural network (RNN) based
controller is trained in a loop with many iterations on a validation set. In each loop, the NAS
first samples a child model as a candidate architecture, then trains it with a related optimizer to
converge, and finally measures the validation accuracy as the reward. The controller parameters
are updated by maximizing the expected reward using Proximal Policy Optimization [34]. The
reward is computed on the validation set rather than the training set. The loop is repeated until the
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Fig. 2. Bottleneck Architecture.

convergence of controller parameters or the maximum number of steps. The challenges of applying
NAS in SearchAuth are: 1) how to reduce search time, and 2) how to design search space. To address
the first challenge, we force all child models to share weights to eschew training each child model
from scratch to convergence, inspired by [35]. To solve the second challenge, we design a model
architecture search space based on MobileNetV3 blocks [36]: bottleneck number, expansion ratio,
filter ratio, squeeze and excitation, and activation function.

We detail the architecture search space as follows.
1) Bottleneck number: The inverted residual with linear bottleneck is used as the basic building

block. As illustrated in Fig. 2, the bottleneck structure basically consists of a 1 × 1 Conv2D, a 3 × 3
DwiseConv2D, a squeeze-and-excitation block (SE-Block), and another 1 × 1 Conv2D. The filters of
both Conv2D (𝐶 × 𝐸𝑅 for the first, 𝐶 × 𝐹𝑅 for the second), the stride of DwiseConv2D (stride=𝑠),
and the activation function (AF) are customized, where if stride = 1 at the input, the shortcut will
apply. Whether SE-Block is included depends on the parameter 𝑆𝐸. If 𝑆𝐸 = 0, SE-Block will be
ignored. In order to ensure that the input resolution decreases gradually, we provide 4 bottlenecks
with stride of 2 and each is followed by the number of 0, 1, 2, or 3 bottlenecks with stride of 1.

2)Expansion ratio (ER): Each bottleneck is followed by expansion to amuch higher dimensional
space and projection to the output. The expansion ratio (1.0, 1.5 or 2.0) is the ratio between the
expansion filter number and the input filter number.

3) Filter ratio (FR): Filter ratio (1.0, or 1.5) is the ratio between the number of the output filters
over that of input filters, so that the channel number increases gradually.

4) Squeeze and excitation (SE-Block): Squeeze and excitation block can adaptively recalibrate
channel-wise feature responses by explicitly modelling interdependencies between channels, which
has been integrated into ResNet-basedmodules [37] and applied in the residual layer ofMobileNetV3
[36]. Whether SE-block is included depends on the parameter value of 𝑆𝐸.
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Table 1. NAS-based Model Architecture

Layer Output ER FR SE AF Stride # Para
Sensor 3 × 200 × 3 - - - - - 0
Conv2d+BN 16 × 100 × 2 - - - HS 2 512
Bottleneck1 24 × 50 × 1 2.0 1.5 1 RE 2 3291
Bottleneck2 24 × 25 × 1 1.5 1.0 1 HS 2 2714
Bottleneck3 36 × 25 × 1 1.0 1.5 1 HS 1 3206
Bottleneck4 36 × 13 × 1 1.5 1.0 0 HS 2 5094
Bottleneck5 54 × 13 × 1 1.0 1.5 0 HS 1 6156
Bottleneck6 54 × 13 × 1 1.5 1.0 1 RE 1 11453
Bottleneck7 54 × 7 × 1 1.0 1.0 1 HS 2 7509
Conv2d+BN 54 × 7 × 1 - - - HS 1 3186
GlobalAveragePooling2d 54 × 1 × 1 - - - - 1 0
Dense 𝐶𝑁 × 1 × 1 - - - - - 3740

5)Activation function (AF): Activation function can be ReLU6 or h-swish, whereℎ−𝑠𝑤𝑖𝑠ℎ[𝑥] =
𝑥
𝑅𝑒𝐿𝑈 6(𝑥+3)

6 [36, 38].
Based on the NAS, we search a network based on neural architecture search, namely NAS-based

model, from the aforementioned search space on our dataset, as illustrated in Table 1. Compared to
pre-determined layers, layers between the two Conv2d+BN layers are searched architectures based
on the NAS, where the convolution kernel size is fixed as 3 × 3. Note that “CN” represents the class
number for training and “-” indicates unavailable parameter in the table.

3.4 Auto Augmentation Search
Varying from manually designed data augmentation approaches, the AAS can automatically search
for the best data augmentation polices from image dataset [39]. For images, there is spatial cor-
relation among the pixels and other pixels around them, while for sensor data, there is temporal
correlation among samples. We utilize the AAS to train the optimal model along with the best
augmentation strategies. The challenges of deploying the AAS in SearchAuth are: 1) how to design
search space, and 2) how to perform strategy search. To solve the first challenge, by regarding the
problem of searching the best augmentation strategy as a discrete search problem, we specially
design a data augmentation strategy space that considers the possible invariant geometric transfor-
mations of sensor data in time series: rotation, jittering, scaling, permutation, magnitude-warping,
time-warping, and cropping. To address the second challenge, by formulating the augmentation
strategy as a parameterized probability distribution, we sample an augmentation strategy from the
search space and apply to it for each training sensor data input, and the strategy with the highest
probability can be the optimal one. In the following, we elaborate the search space and search
pipeline, respectively.

3.4.1 Search Space. We design the candidate augmentation methods for sensor data, and list the
ranges of magnitude for the candidates in Table 2:

1)Rotation: When users operate on mobile devices, the devices are likely to be flipped or rotated
at a certain angle. Accordingly, the 𝑥 , 𝑦, and 𝑧 axes of the sensors on the devices rotate at the same
angle corresponding to the Cartesian coordinate system. In order to simulate this, we design a
rotation method, which rotates the 𝑥 , 𝑦, and 𝑧 axes of the sampled sensor data by multiplying a
rotation matrix to obtain angles of (-𝜋/3, -𝜋/6, -𝜋/12, 𝜋/3, 𝜋/6, 𝜋/12).
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Table 2. Candidate Augmentation Methods.

Method Range of Magnitude
Rotation {-12, -6, -3, 3, 6, 12}
Jittering {0.05, 0.25, 0.5}
Scaling {0.05, 0.1, 0.2}
Permutation {4, 5, 8}
Magnitude-Warping {0.2, 0.4, 0.6}
Time-Warping {0.2, 0.4, 0.6}
Cropping {10, 20, 30}

2) Jittering: Noise can be introduced in the process of sensor data collection which might be
caused by the environmental disturbance. Jittering function adds a noise matrix generated by a
normal distribution with standard deviations (SDs) of 0.05, 0.25, and 0.5 to the sampled sensor data.
Note that we ignore the injection attacks in jittering augmentation [40].

3) Scaling: Scaling function multiplies the 𝑥 , 𝑦, and 𝑧 axes of the sampled sensor data separately
by scale factors generated by a normal distribution with SDs of 0.05, 0.1, and 0.2.
4) Permutation: Since the segmentation position of the fixed window is arbitrary for sensor

data collected in a period of time, the position of the event implied in the sub-window in the whole
window is meaningless. Permutation function segments the whole sample window to 4, 5, or 8
sub-windows by rows to perturb the temporal location of within-window events.

5) Magnitude-Warping: We sample values from a normal distribution with SDs of 0.2, 0.4, 0.6,
then feed them to scipy.interpolate.cubicSpline to generate three random smooth curves correspond-
ing to 𝑥 , 𝑦, and 𝑧 axes, and finally convolute them with the sampled sensor data.

6) Time-Warping: Time-Warping function utilizes the aforementioned smooth curves and one
dimensional linear interpolation to perturb the temporal location smoothly.

7) Cropping: Cropping can diminish the dependency on event locations. In a cropping function,
we randomly select different numbers of window rows (e.g. 10, 20, or 30) and set values of these
selected window rows to 0.

Seven augmentation functions with specific magnitude parameters make up a total of 24 augmen-
tation methods. In our designed augmentation strategy search space, each augmentation strategy
consists of 2 augmentation methods orderly and repeatably. In other words, there are 242 strategies
in the augmentation strategy search space in total.

3.4.2 Search Pipeline. Inspired by Lin et al.’s work [41], we adopt probability distribution optimiza-
tion to the field of continuous authentication to search an optimal data augmentation strategy for
time-series sensor data. As mentioned, since each augmentation strategy consists of two augmenta-
tion methods and the total number of augmentation methods is 24, there are 𝐾 = 242 strategies in
the designed augmentation strategy search space. Thus, we first initialize a 24 × 24 matrix sampled
from a uniform distribution as the augmentation probability distribution \ . The probability of the
𝑘th augmentation strategy 𝑝\ can be formulated as Eq. (1):

𝑝\ (𝑆𝑘 ) =
1

1+𝑒−\𝑘∑𝐾
𝑖=1

1
1+𝑒−\𝑖

, (1)

where \ ∈ 𝑅𝐾 , 𝐾 represents possible augmentation strategies, and 𝑆𝑘 indicates the 𝑘th data
augmentation strategy candidate.

Then, we perform the auto augmentation strategy search. We take an epoch 𝑡 of total 𝑇 epochs
in model training process as an example. Each input will be applied with a randomly chosen
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augmentation strategy for each batch 𝑏 of total 𝐵 batches. Since the validation accuracy 𝑎𝑐𝑐 (𝑤∗) of
the network model is only decided by the NAS-based model parameters𝑤∗ and the model training
process is only influenced by the augmentation strategies applied to each input, the augmentation
probability distribution matrix \ is defined as a variable matrix with gradient about the network
model parameters𝑤∗. However, it is a tricky problem to calculate the gradient of validation accuracy
𝑎𝑐𝑐 (𝑤∗) with respect to \ . To approximate the gradient, we execute the following steps four times
for epoch 𝑡 :
1) Sample and apply an augmentation strategy for each input, train the network model with

augmented inputs, obtain the validation accuracy 𝑎𝑐𝑐 (𝑤 ′), and record the network parameters;
2) Make gradient back propagation for \ , update the value of \ , and then clear the gradient of \ ;
3) Save the network parameters with the highest 𝑎𝑐𝑐 (𝑤 ′) as the initial network parameters for

next epoch.
Based on the reinforcement learning and Monte-Carlo sampling, at the end of epoch 𝑡 , the

cumulative gradient can be approximately formulated as Eq. (2):

∇\ Γ(\ ) ≈
1
𝑁

𝑁∑
𝑛=1

𝐼×𝐵∑
𝑗=1

∇\ 𝑙𝑜𝑔(𝑝\ (𝑆𝑘 ( 𝑗),𝑛))𝑎𝑐𝑐 (𝑤,𝑛), (2)

where 𝑁 denotes the total times of network training (e.g. 𝑁 = 4), and 𝑎𝑐𝑐 (𝑤,𝑛) indicates the
validation accuracy of the 𝑛th network. Network parameters with the highest validation accuracy
will be broadcast to the network before the next epoch. After sufficient epochs of parameters
updates, the augmentation probability distribution converges. The augmentation strategy with
the highest probability is the optimal augmentation strategy we search. Note that the NAS-based
model is used as the network model in the auto augmentation search.

3.5 Feature Extraction
We utilize the trained NAS-based model to learn and extract deep features, where the feature
extraction consists of feature learning and feature selection.

3.5.1 Feature Learning. When users register in SearchAuth, the NAS-based model will be well
trained based on 67 legitimate users with 100 windows 𝐿𝑈 100×67

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔
, and the well-trained NAS-based

model is then used as the feature extractor and the corresponding outputs are regarded as deep
features. As illustrated in Table 1, there are 1,800 (3 sensors × 2 seconds × 100 𝐻𝑧 × 3 axes) samples
in a 2s-sliding window. The first Conv2d layer with 16 filters of 3 × 3 and stride of 2 followed by a
batch normalization and a h-swish, aims to make down sampling and increase channels. Then, 7
bottlenecks with different configurations (expansion ratio, filter ratio, squeeze and excitation, ReLU
or h-swish) are applied to learn high dimensional features. Next, there is another Conv2d layer
with 54 filters, kernel size of 1 × 1 and stride of 1 followed by an adaptive GlobalAveragePooling2d
layer and a dense layer. The total parameters of the NAS-based model are 46,861 (44,705 trainable
parameters and 2,156 non-trainable parameters), where the 6th bottleneck contributes the most
parameters of 11,453. The outputs of the dense layer are deep features learned from the sensors of
the accelerometer, gyroscope and magnetometer.

3.5.2 Feature Selection. We use the principal component analysis (PCA) to select appropriate
number of deep features for the classifier based on the trained NAS model-extracted features. Based
on the experiments in Sec. 4.2, the PCA selects 55 deep features for the LOF classifier to conduct
the authentication.
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3.6 Authentication with LOF Classifier
With the 55 PCA-selected deep features, SearchAuth utilizes the local outlier factor (LOF) classifier
to identify users. LOF measures the local deviation of the data point to its neighbors, which decides
whether a data point is an outlier using the anomaly score estimated by 𝑘-nearest neighbors based
on a given distance metric. A data point with a substantially lower density than its neighbors will
be regarded as an outlier [42].

In the registration stage, SearchAuth generates the legitimate user’s profile and the LOF classifier
is trained by PCA-selected deep features. In the authentication stage, the trained LOF classifier
classifies the PCA-selected deep features from the sampled sensor data. Based on the trained
classifier and the sampled data while the usage of the device, SearchAuth authenticates the current
user as a legitimate user or an impostor. If the user is a legitimate user, SearchAuth will allow the
continuous usage of the smartphone and meanwhile continuously authenticate the user; otherwise,
it will require the initial login inputs.

4 PERFORMANCE EVALUATION
In this section, we evaluate the performance of SearchAuth based on the collected 88 volunteers’
dataset, where the randomly-selected 68 users are used as legitimate users for legitimate user
registration in the registration stage and network model training in the offline stage while the
rest 20 users are regarded as impostors for classifier testing in the authentication stage. For the 68
legitimate users, one of them is randomly-selected as the legitimate user in the registration stage
while the rest 67 users are used as pre-collected data for network model training in the offline
stage until all the 68 users are selected as the legitimate user once. We calculate the mean value of
evaluation metrics in all cases as the reported result. To evaluate the authentication performance,
we start with experimental settings, and then investigate the performance of SearchAuth in terms of
the feature number and classifier parameter, NAS-based model, AAS, efficiency of optimal strategy,
impact of dataset division, and comparison with representative schemes.

4.1 Experimental Settings
4.1.1 Network model training. Based on the 67 legitimate users’ data 𝐿𝑈 100×67

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔
, 80% of the data are

used for training and the rest 20% for testing, with a batch size of 128. We use the cross entropy as
the loss function and the stochastic gradient descent (SGD) optimizer to update the learning rate.
The initial learning rate is 0.01, and it complies with an exponential decay of decay_step = 1000 and
decay_rate = 0.96. If the lowest validation loss remains for 10 continuous epochs or the network
training process exceeds 150 epochs, the training process stops.

4.1.2 Auto augmentation strategy search. The parameters of the augmentation probability distribu-
tion are initialized as a 24× 24 matrix with initial values from a uniform distribution. We use Adam
optimizer with learning rate 0.05, 𝛽1 = 0.9, 𝛽2 = 0.999, weight_decay = 0 to update the matrix. The
distribution parameters are updated 300 times in total.

4.1.3 Classifier training and testing. We use ten-fold cross-validation to train the LOF classifier. For
one selected legitimate user in the registration stage, we first randomly choose 𝐿𝑈 1000

𝑙𝑒𝑔𝑖𝑡𝑖𝑚𝑎𝑡𝑒
from the

legitimate user’s data 𝐿𝑈 3000
𝑙𝑒𝑔𝑖𝑡𝑖𝑚𝑎𝑡𝑒

, and then randomly divide 𝐿𝑈 1000
𝑙𝑒𝑔𝑖𝑡𝑖𝑚𝑎𝑡𝑒

into ten equal-size subsets
𝐿𝑈 100×10

𝑙𝑒𝑔𝑖𝑡𝑖𝑚𝑎𝑡𝑒
, where nine subsets 𝐿𝑈 100×9

𝑙𝑒𝑔𝑖𝑡𝑖𝑚𝑎𝑡𝑒
are used as training data and the rest one 𝐿𝑈 100

𝑙𝑒𝑔𝑖𝑡𝑖𝑚𝑎𝑡𝑒

is used as the positive testing data. Then, we randomly select one subset 𝐼𝑈 100
𝑡𝑒𝑠𝑡𝑖𝑛𝑔 from the 20

impostors’ data 𝐼𝑈 1000×20
𝑡𝑒𝑠𝑡𝑖𝑛𝑔 as the negative testing data, which is repeated 20 times to acquire the

mean result of the classifier testing. Finally, we repeat the above process until all the legitimate
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Fig. 3. Accuracy for the OC-SVM, LOF, and IF Classifiers with Varying Feature Numbers.

users are selected once. The training time for each user including data selection, data division, and
ten-fold cross-validation is about 15 seconds according to our experiments.

4.1.4 Evaluation metric. We utilize three evaluation metrics: accuracy, F1-score, EER to evaluate
the effectiveness of SearchAuth. Accuracy is the percentage ratio of the total number of the correct
authentications against the total number of authentications, defined as: 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 .
F1-score is the harmonic mean of the precision and recall indicating the comprehensive performance
and is defined as: F1-score = 2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁 . EER is the point that the false acceptance rate (FAR) equals
to the false rejection rate (FRR), where the FAR measures the proportion of imposters who gain
access while the FRR measures the proportion of legitimate users who are denied for access [43].

4.2 Feature Number and Classifier Parameter
We conduct experiments to investigate classifier selection and optimal feature number selected by
the PCA. We consider three classifiers, i.e. OC-SVM (one-class SVM), IF (isolation forest), and LOF,
for classifier selection and vary feature numbers to find the optimal feature number. We compute
the accuracy and standard deviation (SD) of SearchAuth with the three classifiers as the feature
number increases from 5 to 65, as tabulated in Table 3. As shown in Table 3, the accuracy gradually
increases with the feature number growing until an optimal number and then slightly decreases for
all the classifiers. For OC-SVM, 25 features selected by the PCA reach the best accuracy of 93.46%
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Table 3. Accuracy (SD) % for Different Classifiers with Varying Feature Numbers

Classifier 5 10 15 20 25 30 35 40 45 50 55 60 65

OC-SVM 86.45 90.00 92.46 93.29 93.46 93.43 93.20 92.86 92.32 91.73 90.97 90.50 90.05
(5.07) (4.22) (3.42) (3.11) (2.93) (2.63) (2.50) (2.44) (2.46) (2.30) (2.36) (2.36) (2.39)

IF 78.10 86.39 90.31 91.70 92.33 92.67 92.96 93.08 93.21 93.31 93.38 93.32 93.27
(7.86) (5.76) (3.97) (3.31) (2.97) (2.85) (2.75) (2.69) (2.55) (2.37) (2.39) (2.54) (2.55)

LOF 55.53 70.37 82.95 88.70 90.79 91.66 92.23 92.67 93.14 93.41 93.52 93.20 92.90
(9.51) (14.77) (11.65) (7.13) (5.70) (5.14) (4.81) (4.44) (4.12) (3.89) (3.85) (4.14) (4.39)

Table 4. Optimal Parameter Combinations

Classifier # Feature Optimal Parameter Combination
OC-SVM 25 ` = 0.0001, 𝛾 = 0.015625
IF 55 n_estimators = 900
LOF 55 n_neighbors = 500, 𝑝 = 1

and for IF, 55 features achieve 93.38% accuracy. However, LOF with 55 features selected by the PCA
reaches the highest accuracy of 93.52%. Therefore, we use the PCA to select 55 deep features for
the LOF classifier.

In addition, based on the optimal numbers of features, we utilize the grid search to seek the best
parameter combinations for classifiers of the OC-SVM, IF, and LOF. We list the classifiers, number
of features, and optimal parameter combination in Table 4. As shown in Table 4, the LOF classifier
with 55 deep features obtains the optimal parameters of 𝑛_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 = 500 and 𝑝 = 1.

4.3 NAS-based Model
Using the LOF classifier (n_neighbors=500, 𝑝 = 1) proposed in Section 4.2, we evaluate the per-
formance of the NAS-based model on dataset 𝐿𝑈 100×67

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔
. To show the superiority, we compare

the NAS-based model with the existing representative network models, such as ResNet50 [44],
MobileNetV3-small [36] and ShuffleNetV2 [45]. To adapt these network models to SearchAuth,
we slightly adjust ResNet50, MobileNetV3-small, and ShuffleNetV2, respectively. (1) ResNet50:
replace the kernel size (7, 7) of the first conv2d with (3, 3); replace the kernel size (2, 2) of the last
AveragePool layer with (7, 1) and the following Flatten layer is used as the feature extraction layer.
(2) MobileNetV3-small: replace all the layers after the Bottleneck layer with one Conv2d layer
(filters = 1024, kernel size = (1, 1), and stride = (1, 1)), one GlobalAveragePool layer as the feature
extraction layer, and one Dense layer. (3) ShuffleNetV2: 0.5× output channel; stride = (2, 1) for
downsampling; match the output channel of the full connection layer to class number, and the full
connection layer is used as the feature extraction layer. We plot the boxes of the accuracy, F1-score,
and EER for ResNet50, MobileNetV3-small, ShuffleNetV2, and NAS-based model, respectively, in
Fig. 4. As demonstrated in Fig. 4, the proposed NAS-based model outperforms the representative
network models with the highest accuracy of 92.08%, the highest F1-score of 92.32%, and the lowest
EER of 6.25 while ResNet50 shows the worst performance with 70.64% accuracy, 77.65% F1-score,
and 11.76% EER. In addition, we list the accuracy, F1-score, EER, parameter number, and FLOPs
for the representative network models in Table 5. As shown in Table 5, the proposed NAS-based
model surpasses the representative network models with margins of 6.99% accuracy, 5.08% F1-score,
3.18% EER at least, respectively. As for parameters and FLOPs, the proposed NAS-based model
is the lightest model with the least parameters of 46,861 and FLOPs of 82,568, both of which are
approximately one tenth of the ShuffleNetV2’s.
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Fig. 4. Accuracy, F1-score and EER for Different Network Models.

Table 5. Performance Comparison with Different Network Models

Network Accuracy (SD) % 𝐹1-score (SD) % EER (SD) % # Para # FLOPs
ResNet50 70.64 (10.71) 77.65 (6.78) 11.76 (4.62) 23,719,364 47,279,392
MobileNetV3-small 84.45 (7.98) 86.53 (5.76) 10.13 (4.17) 2,411,924 4,779,626
ShuffleNetV2 85.09 (7.36) 87.24 (5.43) 9.43 (4.17) 419,228 818,821
NAS-based Model 92.08 (3.48) 92.32 (3.09) 6.25 (3.19) 46,861 82,586

4.4 Auto Augmentation Search
We evaluate the performance of the auto augmentation search by utilizing the NAS-based model
as the network architecture based on dataset 𝐿𝑈 100×67

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔
. In the auto augmentation search, we

instantiate the augmentation probability distribution parameters as a 24 × 24 matrix and save
the corresponding matrix for each of the 300 epochs. Based on the saved matrices, we sum the
rows of each matrix, normalize all rows for each epoch, and visualize rows varying with the
increase of epochs. We calculate the marginal distribution of parameters of the first augmentation
method of each strategy, as illustrated in Fig. 5. As illustrated in Fig. 5, the darker the red, the
closer the probability of the method is to 1, while the darker the blue, the closer the probability is
to 0. As the auto augmentation search progresses, the marginal distribution of each matrix row
converges to 0 or 1. It can be seen that during random sampling training, the parameters of some
augmentation methods gradually increase while others gradually decrease, which indicates that
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Fig. 5. Marginal Distribution of Augmentation Methods.

Table 6. Row and Column Corresponding to the Optimal Augmentation Strategy

Epoch 0 ∼ 9 10 11 ∼ 12 13
(row,column) (7,5) (23,2) (1,12) (12,2)
Epoch 14 ∼ 112 113 ∼ 121 122 ∼ 126 127 ∼ 299
(row,column) (10,5) (15,8) (10,5) (15,8)

some augmentation methods are abandoned while other augmentation methods may be better. In
the last epoch of the process, rows of 2, 7, 11, 14 converge to 1 and rows of 8, 17 converge to 0
explicitly, which indicate that the whole process converges gradually and reaches a local optimal
state finally.
In addition, after updating the parameters of the auto augmentation probability distribution

matrix at the end of each epoch, we calculate the probability for each augmentation strategy by Eq.
(1) and record the row and column of the corresponding optimal augmentation strategy, as shown in
Table 6. We can see that during the training process, with the update of the probability distribution
parameters, the optimal strategy constantly changes for the first 126 epochs and remains for the
rest epochs. At the end of the training, row 15 and column 8 of the optimal strategy for local
convergence can be obtained. It can be considered that Magnitude-Warping (0.2) + Jittering (0.05)
is a relatively good augmentation strategy found on our dataset in the entire auto augmentation
search space with the NAS-based model in Table 1 trained to converge.
We also compare the impact of the AAS on SearchAuth with that on CAuSe [18] by evaluating

their performance with/without AAS. CAuSe utilizes the ShuffleNetV2 model as the CNN network
structure and the optimal classifier of LOF with parameters of n_neighbors=800, 𝑝 = 1 and 95
PCA-selected features while SearchAuth uses the trained NAS-based model as the deep network
and the optimal classifier of LOF with parameters of n_neighbors=500, 𝑝 = 1 and 55 PCA-selected
features. Based on these settings and the same dataset, we evaluate the performance of CAuSe
and SearchAuth. We plot boxes of the accuracy, F1-score, and EER of CAuSe and SearchAuth
with/without AAS in Fig. 6. As illustrated in Fig. 6, both CAuSe and SearchAuth with (w) AAS
outperform themselves without (w/o) AAS, and SearchAuth outperforms CAuSe in terms of both
with AAS and both without AAS. That is, SearchAuth with AAS shows the best performance.
Moreover, we list the impact of the AAS on CAuSe and SearchAuth in terms of the accuracy,
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Fig. 6. Accuracy, F1-score and EER for CAuSe and SearchAuth with/without AAS.

Table 7. Impact of AAS on Network Models

Network Accuracy (SD) % F1-score (SD) % EER (SD) %
CAuSe w/o AAS 85.37 (7.61) 87.54 (5.71) 7.87 (3.59)
SearchAuth w/o AAS 92.08 (3.48) 92.32 (3.09) 6.25 (3.19)
CAuSe w AAS 88.88 (6.64) 90.24 (5.29) 6.50 (3.38)
SearchAuth w AAS 93.95 (4.17) 94.30 (3.68) 5.30 (3.32)

F1-score, and EER in Table 7. As shown in Table 7, the AAS improves the accuracy (3.51% on CAuSe
and 1.87% on SearchAuth) and F1-score (2.7% on CAuSe and 1.98% on SearchAuth) and decreases the
EER (1.37% on CAuSe and 0.95% on SearchAuth) for both CAuSe and SearchAuth, and SearchAuth
with AAS achieves the best performance with 93.95% accuracy, 94.30% F1-score and 5.30% EER,
respectively.

4.5 Efficiency of Optimal Strategy
We evaluate the efficiency of the optimal strategies searched by the AAS. Specifically, based on
the NAS-based model and dataset 𝐿𝑈 100×67

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔
, we randomly select four augmentation strategies

(Rotation (-3) + Magnitude-Warping (0.2), Time-Warping (0.6) + Time-Warping (0.6), Permutation
(8) + Rotation (0.6), and Time-Warping (0.6) + Permutation (2)) and the optimal strategy (Magnitude-
Warping (0.2) + Jittering (0.05)) to augment the dataset, respectively, re-train the NAS-based model
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Table 8. Accuracy, F1-score, and EER (SD) (%) for Different Strategies

Strategy Accuracy (SD) F1-score (SD) EER (SD) (Row, Column)
Rotation(-3)+MagnWarp(0.2) 84.42 (3.60) 83.73 (3.47) 13.53 (5.30) (0,15)
TimeWarp(0.6)+TimeWarp(0.6) 85.05 (3.67) 84.09 (3.98) 11.80 (5.01) (20,20)
Perm(8)+Rotation(0.6) 90.56 (5.07) 91.34 (4.11) 7.01 (3.12) (14,5)
TimeWarp(0.6)+Perm(2) 91.64 (3.96) 91.99 (3.42) 6.52 (3.49) (20,12)
NAS-based model w/o AAS 92.08 (3.48) 92.32 (3.09) 6.25 (3.19) -
MagnWarp(0.2)+Jitter(0.05) 92.99 (3.42) 93.15 (3.12) 5.71 (3.43) (15,8)
NAS-based model w AAS 93.95 (4.17) 94.30 (3.68) 5.30 (3.32) AAS

for feature extraction, and use the LOF classifier to conduct the classification. Moreover, we also
include theNAS-basedmodel without AAS andNAS-basedmodel withAAS for comparison (in Table
7). We compare the proposed NAS-based model with AAS with the representative augmentation
strategies in terms of the accuracy, F1-score, and EER, as tabulated in Table 8 and as illustrated in
Fig. 7. As depicted in Fig. 7, the NAS-based model without AAS outperforms the randomly selected
four augmentation strategies in the accuracy, F1-score, and EER, but is inferior to the optimal
strategy with (15,8), and the NAS-based model with AAS outperforms the optimal strategy. The
reason is that the augmented data are not the optimal match to the searched network architecture
under the original data, even augmented by the optimal strategy. However, the AAS randomly
samples augmentation strategy for each epoch to train the model, and thus the trained model
completely learns the space distribution of the data and shows better generalization capability.
Thus, the proposed NAS-based model with AAS shows the best performance. As listed in Table 8,
we also include the corresponding rows and columns for the augmentation strategies. Specifically,
the NAS-based model without AAS reaches the performance of 92.8% accuracy, 92.32% F1-score and
6.25% EER, and the NAS-based model with AAS achieves the best performance of 93.95% accuracy,
94.30% F1-score and 5.30% EER, by margins of 0.96%, 1.15%, 0.41%, respectively, compared with the
optimal strategy of Magnitude-Warping (0.2) + Jittering (0.05) with row 15 and column 8.

4.6 Impact of Dataset Division
We investigate the impact of the dataset division on SearchAuth by segmenting the 88 volunteers
into different numbers of legitimate users and imposters. Based on the 88 volunteers’ dataset, we
randomly select 𝑛 users as legitimate users for legitimate user registration and network model
training and the rest 88−𝑛 as impostors for classifier testing, where we set 𝑛 as 28, 38, 48, 58, and 68,
respectively. For each dataset division, we re-conduct the experiments based on the experimental
settings in Section 4.1. Table 9 lists the the accuracy, F1-score, and EER with standard deviation (SD)
for SearchAuth on different dataset divisions. As shown in Table 9, with the growth of legitimate
users, the performance of SearchAuth slightly increases (except (𝐿𝑈 = 58, 𝐼𝑈 = 30)). This is because
the more legitimate user data the network model is trained on, the better results the classifier can
reach. For example, SearchAuth reaches the worst performance of 91.78% accuracy, 92.19% F1-score
and 6.41% EER on data division (𝐿𝑈 = 28, 𝐼𝑈 = 60) while achieves the best performance of 93.95%
accuracy, 94.30% F1-score and 5.30% EER on data division (𝐿𝑈 = 68, 𝐼𝑈 = 20). From the results,
we can obtain that different dataset divisions pose less impact on the performance of SearchAuth,
which also indicates the generality of the proposed SearchAuth.
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Fig. 7. Accuracy, F1-score and EER for Different Strategies.

Table 9. Accuracy, 𝐹1-score, and EER (SD) (%) for Different Dataset Divisions

LU / IU 28 / 60 38 / 50 48 / 40 58 / 30 68 / 20
Accuracy (SD) 91.78 (4.29) 91.81 (4.31) 93.11 (3.58) 92.25 (4.02) 93.95 (4.17)
𝐹1-score (SD) 92.19 (3.62) 92.34 (3.67) 93.37 (3.13) 92.67 (3.40) 94.30 (3.68)
EER (SD) 6.41 (3.87) 7.16 (3.52) 6.00 (3.33) 6.68 (3.30) 5.30 (3.32)

4.7 Comparison with Representative Schemes
In this section, we first compare SearchAuth with data augmentation based continuous authentica-
tion schemes, and then with sensor-based continuous authentication approaches on our dataset.

We compare SearchAuth to eight data augmentation based continuous authentication schemes,
i.e. SensorAuth [15], SensorCA [24], EmCL [16], CAGANet [27], EchoPrint [46], HMOG [47],
EmRe [48], and CAuSe [18], as listed in Table 10. As illustrated in Table 10, we show the data
source, data augmentation approaches, and accuracy for all the schemes with data augmentation.
Specifically, SensorAuth explores five data augmentation approaches of permutation, sampling,
scaling, cropping, and jittering to create additional acccelerometer and gyroscope data and achieves
an EER of 19.04% with dataset size of 100 on OC-SVM classifier by combining the five approaches
[15]. SensorCA applies matrix rotation on accelerometer, gyroscope and magnetometer data to
reach an EER of 4.2% with dataset size of 2000 on the SVM-RBF classifier [24]. EmCL utilizes

ACM Trans. Sensor Netw., Vol. x, No. x, Article 1. Publication date: May 2023.



1:20 Y. Li et al.

Table 10. Comparison with Data Augmentation based Continuous Authentication Schemes

Scheme Data Source Data Augmentation Approach Accuracy (%)
SensorAuth [15] Acc., Gyr. Perm., sample, scale, crop, jitter EER: 19.04 (OC-SVM, 100)
SensorCA [24] Acc., Gyr., Mag. Rotation EER: 4.20 (SVM-RBF, 2000)
EmCL [16] EEG CycleGAN Acc: 90.77 (CNN)
CAGANet [27] Acc., Gyr., Mag. CWGAN Acc: 90.08; EER: 8.78 (LOF, 100)
EchoPrint [46] Face image Rotation BAC: 81.78 (vision features)
HMOG [47] Acc., Gyr., Mag. HMOG with tap characteristics EER: 7.16 (walking)
EmRe [48] EEG sWGAN Acc: 65.20 (SVM, 200)
CAuSe [18] Acc., Gyr., Mag. AAS-based optimal strategy Acc: 91.12; EER: 5.68 (LOF, 100)
SearchAuth Acc., Gyr., Mag. Auto Augmentation Search Acc: 93.95; EER: 5.30 (LOF, 100)

Table 11. Comparison with Sensor-based Continuous Authentication Approaches on Our Dataset

Approach Sensor Classifier Result (%)
FAR (SD) FRR (SD)

SensorAuth [15] Acc., Gyr. OC-SVM 7.65 (4.59) 9.01 (5.05)
SensorCA [24] Acc., Gyr., Mag. SVM-RBF 3.16 (1.57) 7.35 (2.52)
CAGANet [27] Acc., Gyr., Mag. LOF 9.32 (5.12) 10.09 (4.52)
HMOG [47] Acc., Gyr., Mag. Scaled Manhattan 12.93 (6.57) 15.67 (7.24)
MultiSensorSVM [29] Acc., Mag., Ori. SVM 8.07 (4.54) 9.97 (4.93)
TwoSensorHMM [49] Acc., Gyr. HMM 10.12 (5.97) 12.58 (6.28)
MultiSensorHMM [50] Acc., Gyr., Mag., Ori. HMM 5.13 (3.01) 6.74 (3.58)
CAuSe [18] Acc., Gyr., Mag. LOF 4.87 (3.62) 8.01 (3.93)
SearchAuth Acc., Gyr., Mag. LOF 3.27 (3.29) 6.11 (3.78)

a cycle-consistent adversarial networks (CycleGAN) to generate EEG sensor data and obtains
an accuracy of 90.77% with a CNN model as the classifier [16]. CAGANet exploits a conditional
Wasserstein GAN (CWGAN) to generate acccelerometer, gyroscope, and magnetometer data and
reaches an accuracy of 90.08% and an EER of 8.78% with dataset size of 100 on the LOF classifier [27].
EchoPrint uses the projection matrix rotation imitating different camera poses to augment new face
images and obtains 81.78% balanced accuracy (BAC) with vision features [46]. HMOG augments
HMOG features with tap characteristics (e.g. tap duration and contact size) to obtain 7.16% EER for
walking [47]. EmRe uses the selective WGAN (sWGAN) to augment EEG sensor and receives 65.20%
accuracy with dataset size of 200 on the SVM classifier [48]. CAuSe exploits the AAS-based optimal
strategy for data augmentation of the accelerometer, gyroscope and magnetometer, and achieves
the best accuracy of 91.12% on the LOF classifier [18]. Comparing to these data augmentation
based continuous authentication schemes, SearchAuth utilizes AAS to train the NAS-based model
along with updating the augmentation probability distribution on the accelerometer, gyroscope
and magnetometer sensor data and achieves the best accuracy of 93.95% and EER of 5.30% with
dataset size of 100 on LOF classifier (except an EER of 4.20% for SensorCA with a long dataset size
of 2000). Note that all the schemes illustrate their best accuracy in Table 10 since they are based on
the most suitable classifiers, datasets and dataset sizes.
In addition, we compare SearchAuth with eight sensor-based continuous authentication ap-

proaches on our dataset, i.e. SensorAuth [15], SensorCA [24], CAGANet [27], HMOG [47], Mul-
tiSensorSVM [29], TwoSensorHMM [49], MultiSensorHMM [50], and CAuSe [18], as tabulated
in Table 11. As demonstrated in Table 11, we show the sensors, classifiers, and corresponding
results of FAR and FRR with their standard deviations (SDs) for the sensor-based approaches on
our dataset. Concretely, SensorAuth explores the OC-SVM classifier on the accelerometer and
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gyroscope data to reach 7.65% FAR and 9.01% FRR [15]. With sensor data of the accelerometer,
gyroscope and magnetometer, SensorCA [24], CAGANet [27] and HMOG [47] achieve 3.16% FAR
and 7.35% FRR with SVM-RBF classifier on dataset size of 2000, 9.32% FAR and 10.09% FRR with LOF
classifier on dataset size 200, and 12.93% FAR and 15.67% FRR with scaled Manhattan, respectively.
MutiSensorSVM utilizes SVM classifier on the accelerometer, magnetometer and orientation data
to obtain 8.07% FAR and 9.97% FRR [29]. Based on the HMM classifier, TwoSensorHMM [49] and
MultiSensorHMM [50] receive 10.12% FAR and 12.58% FRR with the accelerometer and gyroscope
data, and 5.13% FAR and 6.74% FRR with additional magnetometer and orientation data, respec-
tively. With the accelerometer, gyroscope, and magnetometer data, CAuSe achieves 4.87% FAR and
8.01% FRR with LOF classifier [18]. Comparing with these sensor-based continuous authentication
approaches on our dataset, SearchAuth explores the LOF classifier on the accelerometer, gyroscope,
and magnetometer data to reach the best 3.27% FAR and 6.11% FRR with dataset size of 100 (except
a FAR of 3.16% for SensorCA on the long dataset size of 2000).

5 CONCLUSION
To address the challenge of finding an optimal model architecture along with the best data augmen-
tation policies for model training for the current continuous authentication systems, we propose
SearchAuth, a NAS-based continuous authentication on smartphones using the AAS, where the
NAS is specially designed for searching an optimal network architecture and the AAS is exploited
for more effectively training the NAS-based model along with the updating the augmentation
probability distribution. The extensive experiments show that SearchAuth surpasses the most of
the representative authentication schemes by achieving the best accuracy of 93.95%, F1-score of
94.30%, and EER of 5.30% on the LOF classifier with dataset size of 100 on our dataset, respectively.
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