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Abstract—Over the last years, sensor-based continuous authentication on mobile devices has achieved great success on personal
information protection. These proposed mechanisms, however, require both legal and illegal users’ data for authentication model
training, which takes time and is impractical. In this paper, we present MAuGANs, a lightweight and practical Memory-Augmented
Autoencoder-based continuous Authentication system on smartphones with conditional transformer Generative Adversarial Networks
(GANs), where the conditional transformer GANs (CTGANs) are used for data augmentation and the memory-augmented autoencoder
(MAu) is utilized to identify users. Specifically, MAuGANs exploits the smartphone built-in accelerometer and gyroscope sensors to
implicitly collect users’ behavioral patterns. With the normalized legitimate user’s sensor data, MAuGANs uses a CTGAN composed of
a conditional transformer-based generator and a conditional transformer-based discriminator to create additional training data for the
MAu. Then, the MAu is trained on the augmented legitimate user’s data. The trained MAu reconstructs the current user data and then
calculates the reconstruction error between the reconstructed data and current user data. To carry out user authentication, MAuGANs
compares the reconstruction error with a predefined authentication threshold. We evaluate the performance of MAuGANs on our
dataset, where our extensive experiments demonstrate that MAuGANs reaches the best authentication performance, when comparing
with the representative state-of-the-art methods, by 0.33% EER and 99.65% accuracy on 10 unseen users.

Index Terms—Continuous authentication, memory-augmented autoencoder, conditional transformer GANs, EER
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1 INTRODUCTION

W ITH the rapid advancement of mobile communica-
tion technologies, mobile devices have become in-

dispensable and they have been playing a significant role
in our daily lives. Nowadays, people are used to browsing
social networks, doing online shopping and bank transac-
tions, and storing personal sensitive information on mobile
devices. For instances, with the Facebook app on mobile
devices, people can view and comment on news, pictures or
emotional expressions posted by others. With the Walmart
app, people can buy groceries and then pay the order online
with their registered credit/debit cards. People also can
receive private alerts, save screenshots and take photos by
using mobile devices. People’s reliance on mobile devices
is incredibly increasing and thus their importance is quickly
emerging. Thus, it is essential to authenticate the users of the
mobile devices to ensure legal usage. However, traditional
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authentication mechanisms, such as PINs [1] and graphical
patterns, require users’ active participation, suffering, as a
result, from smudge attacks [2], shoulder surfing attacks
[3], and password inference attacks [4]. In recent years,
biometrics-based authentication has become a promising se-
curity mechanism on mobile devices, due to the uniqueness
of human biometric characteristics. Biometric characteristics
can be broadly categorized into: physiological biometrics
and behavioral biometrics. Physiological biometrics refer
to physical traits of the human body, including face, hand
geometry, fingerprint, finger vein, and iris. These traits,
however, not only need costly-specialized sensors, but also
suffer from the hazard of spoofing attacks [5]. For example,
it is indeed possible to generate a synthetic or real par-
tial fingerprint that serendipitously matches one or more
the stored templates for a significant number of users in
practical fingerprint-based authentication systems [6]. Be-
havioral biometrics relate to human behavioral patterns,
involving human motion, gesture, gait, voice, and breath.
For instance, the authors of [7] authenticate users silently
and transparently by exploiting the user touch behavior
biometrics and leveraging the integrated sensors to capture
the micro-movement of the device caused by user’s screen-
touch actions. In [8], the authors utilize the touching sensor
to record the on-screen gesture and the inertial sensor to
capture the device motion caused by the touching gesture,
and then combine the unique features from the on-screen
gesture and the device’s motion for user authentication.
The authors in [9] leverage photoplethysmography (PPG)
sensors available in most wrist-worn wearable devices to
simultaneously perform a password/pattern/signature au-
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thentication and a physiological-based authentication in a
two-factor system. While these authentication systems work
well for initial login on mobile devices, the security issue
may raise with unattended devices after users have logged
in [10].

To mitigate the issue of post initial identification, be-
havioral biometrics-based continuous authentication mech-
anisms have been proposed to implicitly and constantly
verify the users throughout the usage of mobile devices. For
instance, the authors of [13] propose a two-stream CNN-
based continuous authentication system utilizing the one-
class SVM as the classifier. In [15], the authors present
a smartphone-based continuous authentication framework
using a deep learning based support vector data description
(DeSVDD) algorithm as the classifier. Nevertheless, most of
the continuous authentication systems either exploit convo-
lutional neural networks (CNNs) to extract discriminative
features or utilize deep learning networks as classifiers.
Thus, they are facing the challenges associated with insuffi-
cient sensor data and complex classifiers, which degrade the
authentication accuracy and classification efficiency, respec-
tively. Specifically, these authentication systems not only
need a large amount of training data for deep feature extrac-
tors and classifiers, but they require both legitimate user’s
data and imposter’s data for model training. There are
some works addressing the challenge of insufficient training
data by deep learning based data augmentation techniques
[16], [17]. They have, however, to train a deep model for
each source of each user’s data, e.g. 44 × 3 independent
transformer-based GANs for 44 volunteers’ accelerometer,
gyroscope and magnetometer sensor data in [17], which
costs much training resource of time and computation. In
addition, the classifier training usually requires both legiti-
mate user’s data and imposter’s data in most of the existing
authentication systems, which also takes extra costs.

Different from the existing works, we propose MAu-
GANs, a Memory-Augmented Autoencoder based continu-
ous Authentication system on smartphones with conditional
transformer GANs. In MAuGANs, the user performs, on
the commercial mobile devices, widely-adopted operations,
such as web browsing or text producing, that are implicitly
processed without user’s awareness for user continuous
authentication. Specifically, MAuGANs consists of three
modules, data collection and preprocessing, data recon-
struction, and authentication. MAuGANs first leverages the
smartphone built-in accelerometer and gyroscope sensors to
implicitly collect user’s behavioral patterns, which are then
normalized for the designed generative adversarial network
(GAN) training or used for system testing. Based on the
normalized legitimate user’s sensor data, MAuGANs uses,
for smartphone sensor data augmentation, the designed
conditional transformer GAN (CTGAN), composed of a
conditional transformer-based generator and a conditional
transformer-based discriminator, that can be trained on mul-
tiple users’ data simultaneously. With the augmented legit-
imate user’s data, MAuGANs trains the designed memory-
augmented autoencoder (MAu) to record the most repre-
sentative prototypical patterns for data reconstruction in the
enrollment phase. With the current user’s data, MAuGANs
uses the well-trained MAu to reconstruct the data, and cal-
culates the reconstruction error between the reconstructed

data and the current user’s data for authentication in the
continuous authentication phase. We evaluate the overall
performance of MAuGANs on our dataset, and the exper-
imental results demonstrate that MAuGANs outperforms
the representative state-of-the-art methods by achieving the
lowest equal error rate and the highest authentication accu-
racy.

MAuGANs tackles the following challenges to provide
user continuous authentication:

The first challenge is how to generate sufficient training data
with high efficiency? To address this challenge, we design
a conditional transformer GAN for user sensor data aug-
mentation, that creates high-quality accelerometer and gy-
roscope data of users conditioned on their labels. Different
from traditional GANs, the conditioned one can reduce
training cost and enhance generalization.

The second challenge is how to design a lightweight classifier
with only legitimate user’s data? To tackle this challenge, we
design a memory-augmented autoencoder trained only on
the legitimate user’s data. The trained MAu reconstructs
the user’s data based on the current user’s input and then
calculates the reconstruction error for classification. Unlike
widely-used one-class classifiers, such as OC-SVM or isola-
tion forest, we simply compare the reconstruction error with
predefined authentication threshold to identify the user.

The key contributions of our work are summarized as
follows:

• We present MAuGANs, a lightweight and prac-
tical continuous authentication system based on
the memory-augmented autoencoder, leveraging the
smartphone built-in accelerometer and gyroscope
sensors. MAuGANs consists of three modules,
namely data collection and preprocessing, data re-
construction, and authentication.

• We propose, for smartphone sensor data augmenta-
tion, conditional transformer GANs, composed of a
conditional transformer-based generator and a con-
ditional transformer-based discriminator, that can
be trained on multiple users’ data simultaneously,
thereby significantly reducing training cost and mod-
erately enhancing generalization.

• We design a memory-augmented autoencoder to per-
form the identification by harnessing the reconstruc-
tion error on current user input. The MAu trained on
legitimate data is lightweight and can be directly im-
plemented on smartphone for authentication which
is instantaneous.

• We validate MAuGANs using our dataset and com-
pare it with representative solutions. Extensive ex-
periments demonstrate that MAuGANs outperforms
the representative solutions by attaining the lowest
EER and the highest accuracy.

The remainder of this work is organized as follows:
Sec. 2 reviews the existing representative authentication
systems. We introduce the system models consisting of
the communication model, the adversary model, and an
overview of MAuGANs in Sec. 3. In Sec. 4, we depict the
data collection and preprocessing phases for MAuGANs.
Sec. 5 details the conditional transformer GAN for training
data augmentation. Sec. 6 elaborates the data reconstruction
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and authentication processes. We evaluate the performance
of MAuGANs in Sec. 7. Sec. 8 concludes our work.

2 RELATED WORK

In this section, we review the existing representative ap-
proaches dedicated to sensor-based authentication systems,
and data augmentation based authentication systems, re-
spectively.

2.1 Sensor-based Authentication Systems
Smartphones are equipped with various sensors, e.g. the
accelerometer, gyroscope, magnetometer, pressure, micro-
phone, speaker, and camera, which can be exploited to cap-
ture human motion, gesture, gait, and voice for user identifi-
cation. Extensive research works have exploited these built-
in sensors to capture behavioral or physiological biometrics
for user recognition. In [18], the authors leverage the ac-
celerometer, magnetometer, and gyroscope on smartphones
to capture users’ motion patterns for user authentication,
where two types of feature fusion solutions, i.e. serial feature
fusion and parallel feature fusion, are used to combine
the designed features for effective feature representation.
The authors in [19] exploit the accelerometer and gyro-
scope ubiquitously built into smartphones to capture users’
behavioral features for continuous authentication with a
deep feature fusion technology. The authors in [20] explore
users’ PIN input behaviors or patterns to classify their hand
posture shape characteristics by describing the fine-grained
multi-path effect when users’ fingers are still on screens as
a second-factor authentication. In [21], the authors conduct
specially-designed multi-touch gestures with a single swipe
on touchscreens of smart devices to record behavioral traits
and hand geometry for user authentication. The authors in
[22] utilize the smartphone accelerometer to monitor per-
son’s gait patterns continually in the background in order
to identify a walking individual by analyzing the recorded
gait data. In [23], the authors leverage the structure-borne
propagation of sounds to reckon the pressure on the device
screen from the user’s finger for secure PIN authentication.
The authors in [24] extract target specific features with the
best characterized gait patterns, and then apply a normal-
ization algorithm to remove gait-irrelevant perturbation in
signals for a WiFi-based person identification. In [25], the
authors utilize the microphone on mobile devices to cap-
ture pop noises caused by users’ oral airflow when saying
passphrases for voice authentication. In [26], the authors
exploit the acoustic signals from the enrolled device to
compare with the calculated dynamic acoustic fingerprints
by the login device for securing mobile two-factor authen-
tication. The authors in [27] employ the reflected acoustic
signals from vocal tracts during user speaking to perform
user authentication on mobile devices. In [5], the authors
leverage audio modules on smartphones from signal vari-
ations associated with hand dynamics to track the whole
unlocking process of devices and then extract robust and
discriminative features for user identification. The authors
in [28] utilize a signal processing strategy and a pattern
matching technique to capture volitional and non-volitional
gaze patterns by leveraging the built-in front camera to track
human eye movement for user authentication.

Different from the aforementioned authentication sys-
tems, we explore the smartphone accelerometer and gy-
roscope sensors to propose a memory-augmented autoen-
coder based continuous authentication system, which is
lightweight and practical in real-time authentication.

2.2 Data Augmentation based Authentication Systems
Data augmentation is one of the commonly-used tech-
niques in machine learning to prevent model overfitting
and enhance generalization. A significant body of research
utilizes data augmentation strategies to create additional
data for authentication systems that have limited data.
Data augmentation in the authentication can be categorized
into approaches based on transformation, search, and deep
learning. For transformation-based data augmentation, the
authors in [30] explore five transformation-based methods,
namely permutation, scaling, jittering, sampling, and crop-
ping, to create extra data in a continuous identification
system on smartphones. In [31], the authors exploit five
approaches of flipping, downsampling, cropping and label
expansion in both time domain and frequency domain for
time-series anomaly detection. The authors in [32] exploit
local averaging as a down-sampling technique and shuffling
on wearable sensor data for human activity classification.
In [33], the authors transpose landmark pixel coordinates
of a camera to other camera poses to generate training
samples for the authentication of users’ acoustics and vision.
For search-based data augmentation, the authors of [34],
[35] utilize auto augmentation search in the search space
of permutation, jittering, cropping, scaling, rotation, time-
warping, and magnitude-warping on the collected data to
find an optimum plan for augmenting the training data in
a CNN-based continuous authentication system on smart-
phones. In [36], the authors exploit a modality-agnostic
automated data augmentation in the latent space to fine-
tune four universal data transformation operations of hard
example interpolation, hard example extrapolation, Gaus-
sian noise and difference transform to augment data for any
modality in a generic way. The authors in [37] use expert
and gate networks to search the optimal weights for some
meta transformation-based operations to perform data aug-
mentation for activity classification. For deep learning-based
data augmentation, in [38], the authors employ a conditional
Wasserstein generative adversarial network (CWGAN) for
data enhancement in a continuous authentication system on
smartphones. To generate extra training data, the authors
of [17] utilize a transformer-based GAN, composed of a
transformer-based generator and a CNN-based discrimina-
tor in a continuous authentication system on smartphones.

Although these data augmentation approaches have
been used in representative authentication systems, we dif-
fer in that we propose the conditional transformer GANs for
smartphone sensor data augmentation in an authentication
system, which greatly reduces training cost in terms of time
and computation resource.

3 SYSTEM MODEL

In this section, we consider a continuous authentication
system, that explores behavioral features extracted from mo-
tion sensors of the accelerometer and gyroscope on mobile
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Fig. 1: Architecture of MAuGANs.

devices (e.g., smartphones, tablets, and smartwatches). The
users only need to operate on the mobile devices without
knowledge of direct involvement after unlocking them. We
describe next the communication model and the adversary
model, and then provide an overview of MAuGANs.

3.1 Communication Model
We design a continuous authentication system that involves
two players: a set of users and a remote server. The mobile
device acquires the user behavioral traits and transmits
the legitimate user’s data to the server. The remote server
utilizes the legitimate user’s data to train the authentication
model, and then returns the trained model to the mobile de-
vice for conducting authentication. The authentication pro-
cess typically consists of two phases: the enrollment phase
and the authentication phase. In the enrollment phase, the
mobile device captures the legitimate user’s behavioral pat-
terns and then submits the data to the remote server. The
remote server exploits the conditional transformer GAN to
augment the submitted legitimate user’s data, then trains
the memory-augmented autoencoder by using the aug-
mented data, and finally returns the trained autoencoder
to the mobile device. In the authentication phase, the two
sensors begin with collecting real-time behavioral/motion
data while users are operating their mobile devices. Each
device is monitored by its ad hoc trained autoencoder, that
carries out user authentication based on the autoencoder
reconstruction error threshold.

3.2 Adversary Model
Continuous authentication is an implicit identification pro-
cess for users based on extracting behavioral features by
mobile devices’ built-in motion sensors. However, sensor-
based continuous authentication is threatened by the mimic
attack. In this type of attack, an adversary first watches
how a legitimate user operates his/her device to pass the
authentication stage, and then practices to impersonate that
user’s behavior (operation way) to fool the accelerometer
and gyroscope sensors.

3.3 MAuGANs Overview

We present an overview of MAuGANs, a lightweight and
practical continuous authentication system on smartphones,
that exploits conditional transformer generative adversarial
networks (CTGANs) for data augmentation and utilizes a
memory-augmented autoencoder (MAu) to identify users,
as illustrated in Fig. 1. MAuGANs is composed of two
ends: a smartphone and a remote server. The smartphone
is dedicated to the entire continuous authentication process
with the well-trained MAu. The remote server is responsible
for the training of the CTGANs and MAu, which greatly
reduces the computation amount on smartphones. In our
work, we focus on the smartphone end for continuous
authentication, which exploits the built-in sensors of the
accelerometer and gyroscope, to capture users’ behavioral
patterns. As demonstrated in Fig. 1, MAuGANs is com-
posed of three modules: data collection and preprocessing,
data reconstruction, and authentication. The MAuGANs
authentication process consists of the enrollment phase and
the authentication phase.

In the enrollment phase, MAuGANs acquires, on the
smartphone, the profile of a legitimate user by training the
MAu on a remote server. Specifically, the smartphone cap-
tures the legitimate user’s behavioral data from the built-in
accelerometer and gyroscope, which are first preprocessed
and then transmitted to the remote server via a secure
socket protocol. With the normalized sensor data, the remote
server trains the CTGAN to generate more sensor data. The
latter are then combined with the collected data in a certain
proportion for the MAu training. In the training process,
the MAu parameters are updated recursively for effectively
representing the prototypical elements of the legitimate user.
The server sends the well-trained MAu of the legitimate
user to his/her smartphone for user identification.

In the continuous authentication phase, based on the
trained MAu with the legitimate user’s data, MAuGANs
identifies the current user based on the reconstruction error
on his/her sensor data input. Concretely, the accelerometer
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and gyroscope sensor data are collected once a user starts
using the smartphone. They are then normalized, and fed
to the trained MAu of the legitimate user. Next, the trained
MAu reconstructs the normalized sensor data from the cur-
rent user input and then calculates the reconstruction error
between the reconstructed data and the current user data
input. If the reconstruction error is less than a predefined
authentication threshold, MAuGANs identifies the current
user as a legitimate one; otherwise, the proposed system
recognizes the user as an imposter, and thus the mobile
device will be locked for initial login.

MAuGANs is highly adapted to the resource-
constrained mobile devices, as it is lightweight thanks to
its few computation demands associated with data recon-
struction and comparison, and its practicability emanating
from the simple implementation of the trained MAu.

4 DATA COLLECTION AND DATA PREPROCESSING

In this section, we describe the data collection process and
the preprocessing of the collected data.

For data collection, we choose smartphone built-in sen-
sors that can effectively represent the user’s behavioral
characteristics. The accelerometer motion sensor captures
the user coarse-grained patterns, such as hand movements.
The gyroscope sensor acquires fine-grained motion traits,
such as finger touch gestures. The magnetometer measures
the ambient magnetic field, such as device orientation [39].
To reduce the computation and accelerate the authentica-
tion, we select the accelerometer and gyroscope sensors
for MAuGANs. Once a user begins operating the smart-
phone, MAuGANs starts collecting the sensor data of the
accelerometer and gyroscope over an authentication period
t with sampling rate fs. For each period t, MAuGANs
gains n (n = t × fs) samples of sensor data, each denoted
by (xa, ya, za, xg, yg, zg)

T ∈ R6, where x, y, z indicate a
sensor’s three axes, and a, g represent the sensors of the
accelerometer and gyroscope, respectively.

For data preprocessing, we first represent the collected
sensor data of a time period t by a r × n matrix:

D = [D1, D2, · · · , Dr]T =


x1
a y1a z1a x1

g y1g z1g
x2
a y2a z2a x2

g y2g z2g
...

...
...

...
. . .

...
xn
a yna zna xn

g yng zng


T

,

where r = 6 and n = t × fs. Then, we normal-
ize each axis of each sensor into (0,1] by dijnorm =
di
j

−min(Di)max(Di)−min(Di), where i = 1, 2, · · · , r for
each axis of the two sensors and j = 1, 2, · · · , n for the
number of samples, respectively. Finally, the normalized
sensor data Dnorm are used for the training of the condi-
tional transformer GANs in the enrollment phase.

5 CONDITIONAL TRANSFORMER GAN FOR DATA
AUGMENTATION

Generative adversarial networks (GANs) present a solution
to learn deep representations without extensively-annotated
training data [44], [45]. They have been widely applied
in classification and regression tasks (e.g. DCGAN [46],
CoGANs [47] and SimGAN [48]), image synthesis (e.g.

TABLE 1: Generator Structure

Operators Output Repeat Multi-head
Random Noise + one-hot label 100 +N 1 -
MLP 6400 1 -
Reshape 50× 128 1 -
Transformer 50× 128 10 8
Upsample 200× 32 1 -
Transformer 200× 32 10 8
Reshape 20× 10× 32 1 -
Conv 20× 10× 3 1 -
Reshape 200× 3 1 -

LAPGAN [49], GAWWN [50], and DeLiGAN [51]), image-
to-image translation (e.g. CycleGAN [52] and MGANs [53]),
and super-resolution (e.g. SRGAN [54]). GANs are typically
composed of two adversarial networks, i.e. the generator
and the discriminator. The generator aims to learn the
distribution of the genuine data, while the discriminator
aims to correctly distinguish whether the input data come
from the genuine data or the generated data. Transformer
is a model architecture entirely depending on an attention
mechanism to capture global dependencies between its
inputs and outputs [55]. Thus, transformer-based GAN is
typically composed of a transformer-based generator that
progressively increases feature resolution and a multi-scale
discriminator that simultaneously draws semantic contexts
and low-level textures [56]. As an unsupervised learning
method, the transformer-based GAN, however, suffers from
issues associated with random output and excessive train-
ing. Specifically, there is no control on the modes of the
data being generated, and thus the models need to be
trained on each class separately. In this section, we propose
a transformer GAN conditioned on class labels, conditional
transformer GAN (CTGAN), that tackles the issues men-
tioned above. We to propose a conditional transformer
GAN for smartphone sensor data augmentation. Superior
to unconditional transformer GAN, the CTGAN can train
multiple users’ data simultaneously, and only configures
the hyper-parameters once, thereby significantly reducing
training cost and moderately enhancing generalization.

5.1 CTGAN
The CTGAN consists of a conditional transformer-based
generator and a conditional transformer-based discrimina-
tor. The transformer encoder is composed of a multi-head
self-attention module and a feedforward multiple-layer per-
ceptron with GELU nonlinearity.

5.1.1 Generator
The generator produces genuine-like samples by learning
the distribution of the real data. As shown in Table 1 and Fig.
2(a), the conditional transformer-based generator mainly
consists of 2 stages of transformers with the input of the
random noise concatenated with one-hot labels, where each
stage stacks 10 transformer encoders with 8 heads for the
multi-head attention mechanism. Before each transformer
encoder, the positional encoding is inserted, due to the time-
sequential nature of the sensor data, and thus the generated
samples conform to the time series aspect of real samples.
An upsample block composed of a reshaping module and
a pixel-shuffle module is placed between the transformer
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Fig. 2: Architecture of CTGAN.

stages for reducing the parameter amount and fitting long
time-window data. To obtain the output with the sensor
data format, we first reshape the 1D sequence generated by
the last transformer to a 2D feature map, then use the Conv
to compress the embedding dimension, and finally reshape
it back to a 1D sequence associated with sensor data format.

5.1.2 Discriminator
The discriminator distinguishes whether a sample is from
the real data or genuine-like data. As shown in Table 2 and
Fig. 2(b), the conditional transformer-based discriminator
mainly consists of Conv (patch embedding), transformer,
and dense layers, where the Conv layer has no activation
function, the dense layer adopts a leaky version of the
rectified linear unit (LeakyReLU) as the activation function,
and WANG-GP is adopted as the loss function. The input
sensor data are first split into patches, then projected into
a high-dimension space by patch embedding, and finally a
class token is appended at the beginning and the positional
encoding is added as the input of the transformer layer.
The transformer layer consists of stacked 10 transformer
encoders with 8 heads for the multi-head attention mech-
anism. The class token is acquired from the output of the
transformer layer, and then is combined with a one-hot label
as the input of three dense layers for classification.

5.2 Data Augmentation
In the traditional field of natural language processing (NLP),
the transformer typically takes a sentence as the input,

TABLE 2: Discriminator Structure

Operators Output Repeat Multi-head
Sensor Data 200× 3 1 -
Patch Embedding 20× 128 1 -
Add cls token 21× 128 1 -
Transformer 21× 128 10 8
Acquire cls token 128 1 -
cls token+one-hot label 128 +N 1 -
Dense (LeakyReLU) 512 1 -
Dense (LeakyReLU) 512 1 -
Dense 1 1 -

where each word is represented by a fixed-length vector
through embedding. In this work, we select a time period
of t = 2 seconds with a sampling rate of fs = 100Hz, and
thus n = t×fs = 200 samples can be collected in the period.
Then, the 2-second Dnorm sensor data can be represented by
a 1D sequence of (200, 3), where 200 denotes the sequence
length and 3 indicates the embedding representation of each
position. Thus, the generator takes the input of the random
Gaussian noise with size of 100 concatenated with N one-
hot labels (N = 70 corresponds to 70 users) and then feeds
them to a multiple-layer perceptron (MLP), which are then
reshaped into a vector with length of (50 × 128) for the
transformer encoder, where 50 indicates the time window’s
length and 128 represents 128-dimensional embedding for
the sensor data. Between the two transformer encoders,
the 1D sequence vector (50 × 128) is first reshaped to
a 2D feature map with shape of (10 × 5 × 128) by the
upsample layer, where an upsampled feature map with
shape of (20× 10× 32) is obtained by using the pixelshuffle
operation, and the first two elements are then combined
in the embedding dimension resulting in a 1D sequence
with shape of 200 × 32, which are then fed to the other
transformer encoder. To obtain the sensor data format (three
embedding dimensions corresponding to the three axes of
a sensor), 1D sequence data with 32 dimensions generated
by the second transformer is first reshaped to a 2D feature
map with shape of 20 × 10 × 32, and then the channel is
compressed to 3 by the Conv layer, and finally the data is
reshaped back to a 1D sequence with shape of 200× 3.

Taking the real data or generated data with shape of
(200 × 3) as the input, the discriminator utilizes a patch
embedding operation to map the senor data into a high-
dimensional space representation of (20 × 128), where the
patch embedding is deployed by a convolution with kernel
size of (10 × 10), stride of (10 × 10) and kernel number of
128. After that, a 128-dimensional class token is appended at
the beginning of the representation to obtain a 1D sequence
with shape of (21 × 128), and then a positional encoding
with shape of (21 × 128) is added, which is then fed to
the transformer encoders. The 128-dimensional class token
in the output is acquired and then is concatenated with a
N -dimensional one-hot label to obtain a 1D sequence with
shape of ((128 + N) × 1), which is taken by three fully-
connected layers to output the real or fake prediction.

6 DATA RECONSTRUCTION AND AUTHENTICATION

Data compression and reconstruction are significant unsu-
pervised approaches in anomaly detection tasks. As these
approaches learn a normal profile based only on the normal
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data examples, they do not reconstruct well the anomaly
samples when compressing and reconstructing them. The
expectation then is that the reconstructed error is larger
in this case, which allows identifying the anomaly sam-
ples. Real-life anomaly detection tasks, however, are chal-
lenging due to the lack of human supervision. With the
development of deep learning, it is possible to use deep
neural networks to fit arbitrary data distributions. Deep
autoencoder (AE) is one of the deep learning models that
is effective for compressing and reconstructing input data.
The AE is typically composed of an encoder and a decoder,
where the encoder generates a compressed encoding from
the input and the decoder reconstructs the data from the
encoding [57]. Specifically, the encoder compresses the high-
dimensional input data (e.g. pictures, and time-series data)
into a low-dimensional feature representation (encoding) by
propagating the input through the encoder layers (i.e. Fully
connected (FC), and Conv). The decoder restores and recon-
structs the low-dimensional feature representation through
the decoder layers (i.e. FC, and DeConv) to obtain an
approximation of the original input. However, the authors
in [58], [59] indicate that sometimes the AE can generalize
so well that it can also reconstruct abnormal inputs well.
To tackle this undesirable generalization issue, a memory-
augmented autoencoder is proposed in our work to reduce
too strong generalization [59].

6.1 Memory-Augmented Autoencoder

Inspired by [59], [60], we design a memory-augmented
autoencoder, named MAu, to perform the classification.
The MAu mainly consists of an encoder, a feature memory
module, and a decoder, as illustrated in Fig. 3. Different
from an autoencoder (AE), the MAu includes a memory
module, which saves the prototypical features of trained
normal samples. Thus, the decoder in the MAu conducts
data reconstruction merely from the prototypical features
saved in the memory, thereby addressing the generaliza-
tion issue of abnormal samples. As shown in Fig. 3, the
encoder module in the MAu encodes the input into a latent
feature representation. Then, the memory module utilizes
the encoded representation as a query to fetch the most
similar features in the memory through memory address-
ing. Finally, by adding the stored feature representation
as memory-based representation, the decoder performs the
data reconstruction.

Encoder and decoder: The encoder intends to compress
the input sensor data into a latent feature representation,
that is used as a query to retrieve the relevant items in
the feature memory. The encoder of the MAu consists of
four consecutive Conv layers with the batch normalization
(BN) and LeakyReLU on each layer. The decoder aims to
reconstruct the input sensor data from the memory-based
representation in the feature memory. The decoder of the
MAu is composed of four stacking ConvTranspose layers
with BN and LeakyReLU on the first three layers.

Feature memory: The feature memory stores the proto-
typical encoded feature representations with the input of
the feature representation from the encoder, as shown in
Fig. 4. The feature memory is used to store the features
during training, with random values as its initial content.

Fig. 3: Architecture of MAu.

i i

Fig. 4: Architecture of feature memory.

The latent features (strips) in the feature memory will be
clipped (orange strips) or addressed (green strips) to vec-
tors (green bars), which are then computed to memory-
based representation according to the following addressing
method.

In order to obtain address vector V , we exploit the co-
sine similarity to compute the similarity between the latent
feature representation LR from the decoder and each of the
stored feature SF in the feature memory by Eq. (1) and then
use the softmax() function to normalize the similarity by
Eq. (2):

CS(LR,SFi) =
LR× SFT

i

∥LR∥∥SFi∥
, (1)

Vi = softmax(CS(LR,SFi)), (2)

where SFi is the ith stored feature in the feature memory,
and Vi represents the ith value of the address vector V .

In order to further weaken the reconstruction ability
of abnormal samples, we apply the clip operation on the
address vector as in Eq. (3):

Vi =

®
Vi, Vi > λ

0, otherwise
(3)

where i ∈ [1,memcap], memcap indicates the capacity of
the feature memory (a hyper-parameter), and λ = 1

memcap is
a threshold. Eq. (3) indicates Vi is set to itself if the similarity
is greater than the threshold λ; otherwise Vi = 0.
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Memory-based representation: The memory-based rep-
resentation MR output by the feature memory can be
expressed as Eq. (4):

MR =

memcap∑
i=1

(SFi × Vi) (4)

Based on the memory-based representation, the decoder
outputs the reconstructed sensor sequence, which are com-
pared with the input sensor sequence to measure the recon-
struction error. We use the reconstruction error as the crite-
rion for classification, by deciding the user to be an impostor
if this error is greater than the predefined threshold.

6.2 Data reconstruction:
We design the MAu architecture for data reconstruction, as
illustrated in Table 3. Given the accelerometer and gyro-
scope sensor data of 2× 200× 3 as the input, the first Con-
volution layer with 32 kernels, kernel size of 3× 1, padding
of 1× 0 and stride 1× 1 generates a 32× 200× 3 output. In
order to increase channels from 32 to 128, three consecutive
Convolution layers with kernel size of 3×3, padding of 1×0,
stride of 2 × 1, and kernels of 64, 128, 128, respectively, are
applied and 128 × 25 × 3 of latent feature representation
is obtained. We apply the BN and LeakyReLU on each
convolution layer. In our work, the dimension of the stored
feature is set to 128. Then, the latent feature representation
is reshaped to 128 × 75 and then fed to feature memory.
After memory reconstruction, memory-based representation
of 128×75 is obtained and then reshaped back to 128×25×3
for the input of the decoder. The memory-based representa-
tion of 128 × 25 × 3 is fed to four layers of ConvTranspose
with kernel size of 3×1, padding of 1×0, stride of 2×1 (1×1
for the last layer), and kernels of 128, 64, 32, 2, respectively,
to reconstruct data of 2 × 200 × 3. The second dimension
of the kernel size and the stride in the encoder and decoder
are set to 1, so that they reconstruct the data of a single axis
(x, y, z) of a sensor, thereby extracting and reconstructing
features of different axes. We apply the BN and LeakyReLU
on the first three ConvTranspose layers.

6.3 Authentication
The reconstruction error is the difference between the re-
constructed sensor sequence output by the decoder and the
input sensor sequence to the encoder. If the error is larger
than the predefined threshold, the user is recognized as an
imposter. The reconstruction error is calculated by the mean
square error (MSE) in Eq. (5):

MSE =
1

i× j × k

2∑
i=1

200∑
j=1

3∑
k=1

(Oijk −Rijk)
2 (5)

where O indicates the input sensor data, R represents the
reconstructed sensor data by the MAu, and i, j, k denote
data dimensions.

In real-time applications, the MSE of 2-second sensor
data is computed and then compared with a predefined
authentication threshold, which is assigned according to the
best result on the cross-validation tests. If the MSE is less
than the threshold, the user is identified as a legitimate
user; otherwise, the user is classified as an imposter and
the phone will be locked immediately.

7 PERFORMANCE EVALUATION

We, in this section, evaluate the performance of MAuGANs
based on the collected 70 subjects’ dataset. For each subject,
we randomly select 80% data as the training data and the
rest 20% as the testing data. After training, we test the
trained MAu model 70 times for each subject, on the datasets
consisting of the real testing data (20% of the subject’s data)
as positive data and randomly-selected data from other sub-
jects as negative data in a proportion of 2 : 1. This is because
the legitimate user has more chances to access the device
than imposters. For the predefined authentication threshold,
we add different numbers of legitimate users to the testing
data in order to show that the system can correctly distin-
guish between legitimate users and imposters. During the
test, we assign the threshold by the value when the system
obtains a balanced EER. In practical, due to the absence
of imposters’ data, the average value of legitimate users’
data reconstruction errors can be used as the threshold. To
evaluate the performance of MAuGANs, we describe the
experimental setup and then detail the extensive experi-
ments. For the evaluation experiments, we start with the
performance of MAuGANs. Then, we evaluate the efficiency
of CTGANs, the effectiveness of data augmentation, and
the efficiency of the MAu, and next analyze the security
of MAuGANs. Finally, we compare MAuGANs with the
representative state-of-the-art methods.

7.1 Experimental Setup

In this section, we describe our experimental setup includ-
ing the dataset collection, the training of the CTGAN and
MAu, and the evaluation metrics.

7.1.1 Dataset

To collect the experimental data, we developed an Android
phone-based data collection tool to acquire users’ behavioral
patterns when they interact with their phones [61]. For our
dataset collection, we recruited 100 volunteers including
53 males and 47 females to interact with the experimental
phones, with the IRB approval from William & Mary. To
obtain high-quality data, we instructed subjects to execute
three interactive tasks: document reading, text producing,
and map navigating for locating a destination, which largely
encompassed the behaviors of users using their mobile
devices. Once the subjects signed in the data collection tool,
one of the three tasks was automatically assigned. For each
session, the subject either sat or walked to finish the tasks,
which lasted about 5 to 15 minutes. The subjects performed
24 sessions (8 reading sessions, 8 writing sessions, and 8
map navigating sessions) in the same way as an ordinary
user would do, producing 2 to 6 hours of behavior traits
in total. The sensor readings of the accelerometer and gyro-
scope with a sampling rate f = 100 Hz were stored as CSV
files on the experimental devices.

In our experiments, we select 70 subjects’ data from the
collected accelerometer and gyroscope sensor data on the
experimental phones, where the first 100-minute data of
each subject (with a size of the 2-second time window) were
chosen as our experimental dataset.
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TABLE 3: MAu Architecture

Operators Output # Kernel KSize Padding Stride
Sensor Data 2× 200× 3 − − − −
Conv+BN+LeakyReLu 32× 200× 3 32 (3, 1) (1, 0) (1, 1)
Conv+BN+LeakyReLu 64× 100× 3 64 (3, 1) (1, 0) (2, 1)
Conv+BN+LeakyReLu 128× 50× 3 128 (3, 1) (1, 0) (2, 1)
Conv+BN+LeakyReLu 128× 25× 3 128 (3, 1) (1, 0) (2, 1)
Feature Memory 128× 25× 3 − − − −
ConvTranspose+BN+LeakyReLu 128× 50× 3 128 (3, 1) (1, 0) (2, 1)
ConvTranspose+BN+LeakyReLu 64× 100× 3 64 (3, 1) (1, 0) (2, 1)
ConvTranspose+BN+LeakyReLu 32× 200× 3 32 (3, 1) (1, 0) (2, 1)
ConvTranspose 2× 200× 3 2 (3, 1) (1, 0) (1, 1)
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Fig. 5: EER, accuracy, and F1 score for MAuGANs on varying number of unseen users.

TABLE 4: EER, FAR, FRR, Accuracy, and F1 score (%) with SD on Different Number of Unseen Users

Unseen User 10 20 30 40 50 60 69
EER (SD) 0.33 (0.60) 0.58 (1.40) 0.71 (1.45) 0.80 (1.66) 0.83 (1.81) 0.86 (1.99) 0.93 (2.15)
FAR (SD) 0.25 (0.60) 0.52 (1.44) 0.70 (1.50) 0.77 (1.68) 0.78 (1.84) 0.80 (2.00) 0.89 (2.18)
FRR (SD) 0.40 (0.62) 0.64 (1.39) 0.73 (1.42) 0.84 (1.66) 0.88 (1.81) 0.92 (1.99) 0.97 (2.13)

Accuracy (SD) 99.65 (0.60) 99.40 (1.40) 99.28 (1.44) 99.19 (1.67) 99.15 (1.81) 99.12 (1.99) 99.06 (2.14)
F1 score (SD) 99.73 (0.45) 99.54 (1.07) 99.46 (1.10) 99.40 (1.25) 99.36 (1.40) 99.33 (1.54) 99.30 (1.63)

7.1.2 Training

Conditional transformer GAN training: we train two indepen-
dent CTGANs for the accelerometer and gyroscope, respec-
tively, only on the corresponding 70 subjects’ data associated
with their one-hot labels, with batch size of 128. For each
CTGAN, with a batch of 100-dimensional Gaussian noise
and one-hot labels of 70 subjects as the input, the generator
creates sensor data associated with their one-hot labels. With
the generated data and real data as the inputs, the discrimi-
nator seeks to distinguish them from each other and only the
classified true data associated with the user true label can
be recognized as true. In the CTGAN training, for both the
generator and discriminator, we apply the WGAN-GP loss
function and Adam optimizer to update the learning rate for
200 epochs with an initial value of 0.000001 and a weight
decay of 0.00001. We train the generator once for every 2
epochs of the discriminator training. After the CTGANs are
well trained, only the generators remain for accelerometer
and gyroscope sensor data augmentation, respectively.

Memory-Augmented Autoencoder training: We train the
MAu only for the legitimate user for real-time authenti-
cation in practice. We combine the randomly-selected 80%
data of the legitimate user with the corresponding CTGAN-
augmented data in the proportion of 1 : 2 as the training
data for the MAu and the rest 20% with are utilized for

testing, with a batch size of 1,024. We feed each batch
of user training data to the corresponding MAu, calculate
the reconstruction error on the input and output of each
epoch, then perform back-propagation, and finally update
the parameters for the learning rate. We also apply Adam
optimizer to update the learning rate with the initial value
of 0.0001 for 800 epochs. The MAu has approximately 20M
parameters and the average training time of the MAu is
about 320s (about 0.4s per epoch on a 3070 GPU and 800
epochs in total), which makes the training of our MAu
effortless.

7.1.3 Metrics
We employ the FAR (false acceptance rate), FRR (false rejec-
tion rate), EER (equal error rate), accuracy, and F1 score, as
our evaluation metrics. The latter are widely used in contin-
uous authentication systems to comprehensively assess the
performance. FAR indicates the percentage of the number of
imposters’ samples that are falsely identified as legitimate
samples w.r.t the total number of imposters’ samples [62].
The FRR represents the ratio between the number of falsely
rejected legitimate samples and the number of all legitimate
samples [63]. The EER is the intersection value when the
FAR equals the FRR [8]. It provides a good trade-off as a
high FAR might lead to the admission of more imposters,
while a high FRR might cause the rejection of more legiti-
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mate users. The accuracy measures the likelihood that the
system accepts legitimate users and rejects imposters [25].
F1 score is the harmonic mean of the precision and recall; its
best and worst scores are 1 and 0 respectively [17].

7.2 Overall Performance of MAuGANs
We evaluate the overall performance of our system MAu-
GANs in terms of EER, FAR, FRR, accuracy, and F1 score,
by varying the number of unseen users. To conduct the
experiment, we first randomly select one subject from 70
subjects as a legitimate user, where 80% data of the user
are used to train MAuGANs. Then, we randomly select n
subjects as imposters (unseen users) from the remaining 69
subjects. The n-imposters’ data are combined with the rest
20% legitimate user’s in the proportion of 1 : 2 to validate
MAuGANs, with n = 10, 20, ..., 60, 69. We calculate the
corresponding metrics until each subject is selected once as
the legitimate user. Fig. 5 depicts the box plots of the EER,
accuracy, and F1 score for MAuGANs for a varying number
of unseen users. As illustrated in Fig. 5, the EER, accuracy,
and F1 score show a relative stable and high-precision
trend for all the different unseen users. Specifically, with
the increase of the number of the unseen users, the mean
EER slightly grows under 1% (Fig. 5(a)), the accuracy slowly
decreases over 99% (Fig. 5(b)), and the F1 score slightly
drops above 99% (Fig. 5(c)), which indicate MAuGANs
has high-precision authentication performance. For further
analysis, Table 4 lists the EER, FAR, FRR, accuracy and
F1 score with SD (standard deviation) for MAuGANs on
different numbers of unseen users. As tabulated in Table
4, with the growing number of unseen users, EER, FAR,
and FRR slightly increase, while the accuracy and F1 score
slowly decrease. MAuGANs achieves the best performance
of 0.33% EER, 0.25% FAR, 0.40% FRR, 99.65% accuracy on
10 unseen users, and 99.73% F1 score, and attains the worst
results of 0.93% EER, 0.89% FAR, 0.97% FRR, 99.06% accu-
racy, and 99.30% F1 score on 69 unseen users. From Fig. 5
and Table 4, we can conclude that MAuGANs achieves high-
precision and effectiveness in verifying legitimate users with
less than 1% EER and more than 99% accuracy for different
numbers of unseen users.

7.3 Efficiency of Conditional Transformer GANs
To assess the efficiency of the proposed CTGANs, we
explore three metrics to measure the quality of the cre-
ated data: the discriminator loss, MMD (maximum mean
discrepancy), and t-SNE (t-distributed stochastic neighbor
embedding). The discriminator loss measures the Earth-
Mover distance between the genuine sensor samples and
the created samples until the network converges; the higher
the quality of the generated samples, the closer the loss is
to 0 [64]. The discriminator losses of the generated data of
accelerometer and gyroscope sensors are visualized in Fig.
6. As illustrated in Fig. 6, with the growth of the training
epochs, the discriminator loss of the generated accelerome-
ter sensor data first sharply drops, then increases immedi-
ately close to 0, and then slightly drops and gradually grows
to 0 until 140 epochs. The discriminator loss of gyroscope
slightly oscillates around a small value and reaches 0 until
70 epochs. Thus, the discriminator losses converging to 0

indicate that the generated accelerometer and gyroscope
sensor data show similar distributions to their real data, and
thus have high quality.

The MMD calculates the distance between the genuine
sensor sample distribution and the created sensor sample
distribution; the higher the quality of the created samples,
the closer the MMD is to 0 [65]. Based on the trained
CTGAN, we compute the MMD of 50 created samples and
50 genuine samples at one epoch until 200 epochs, for the
accelerometer and gyroscope, respectively, as illustrated in
Fig. 7. As shown, the MMD of the accelerometer sensor data
decreases slowly until 100 epochs, then sharply drops, and
finally slightly trends towards a very small value (approx-
imately 0) around 125 epochs while that of the gyroscope
data oscillates around 100 and falls to a small value around
125 epochs, with the increase of the epochs. MMDs close to
0 mean that the created sensor samples show high quality.

t-SNE maps the high dimensions of the created data sam-
ples non-linearly into 2D, which can be visualized [66]. We
generate the same amount of data as the real data’s amount
for the accelerometer and gyroscope sensors, respectively,
and then randomly select 500 samples for each sensor from
these data. Then, we visualize the distributions of the 500
generated samples and 500 real samples of the two sensors
by t-SNE in Fig. 8. Blue star and orange star indicate the
genuine and created samples of the accelerometer, while
red triangle and purple triangle represent the genuine and
created samples of the gyroscope. As depicted in Fig. 8, the
sensor data are clearly divided by colors into two clusters
associated with the two sensors. In each cluster, most of
the genuine data and created data overlap, which illustrates
the created sensor data show a quite close distribution to
the real data. Therefore, we can conclude that the proposed
CTGANs generate high-quality sensor data for MAuGANs.

7.4 Effectiveness of Data Augmentation

We investigate the effectiveness of the proposed CTGANs-
based data augmentation by comparing MAuGANs with
CTGANs and MAuGANs without CTGANs on different
data sizes. To conduct the experiment, we randomly select
one out of 70 subjects as a legitimate user and the remaining
69 as imposters, in order to train and test MAuGANs until
each subject is selected once as the legitimate user; we
choose the worst settings of 69 unseen users from Table 4.
With the data size growing from 100 to 500, we illustrate the
EER, accuracy, and F1 score for MAuGANs with CTGAN
(orange box) and MAuGANs without the augmentation
(blue box) in Fig. 9. As illustrated in Fig. 9, MAuGANs
with data augmentation overall outperforms that without
augmentation. The performance slightly fluctuates with the
increase of the data sizes, and the CTGAN shows the best
performance with the data size of 200. Compared to that
without data augmentation, MAuGANs always achieves
lower EER (Fig. 9(a)), higher accuracy (Fig. 9(b)), and higher
F1 score (Fig. 9(c)), which indicate the effectiveness of the
proposed CTGANs on MAuGANs. In addition, we list the
EER, FAR, FRR, accuracy and F1 score with or without data
augmentation approaches over different data sizes in the
first two rows of Table 5. As depicted, MAuGANs with
CTGAN data augmentation reaches the best EER of 2.56%,
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Fig. 9: EER, accuracy, and F1 score of MAuGANs with or without CTGAN over different data sizes.
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Fig. 10: EER, Accuracy, and F1 score with different data augmentation methods over different data sizes.

FAR of 2.44%, FRR of 2.67%, accuracy of 97.40%, and F1
score of 98.07% on data size of 200, which show margin
improvements of 0.36% on EER, 0.40% on FAR, 0.33% on
FRR, 0.35% on accuracy, and 0.99% on F1 score, compared
to no data augmentation.

To further verify the effectiveness of CTGANs-based
data augmentation approach, we compare our CTGAN with
representative data augmentation approaches, such as deep
learning based methods – transformer-GAN [17] and CW-
GAN [38], and geometric transformation based methods –
permutation, scaling, and sampling. Based on the setting of
69 unseen users, we conduct the same experiment as MAu-
GANs evaluation in Section 7.2, by replacing the CTGAN

in MAuGANs with the aforementioned representative data
augmentation approaches. With the data size growing from
100 to 500, we plot boxes of the EER, accuracy, and F1 score
with the representative data augmentation approaches, as
illustrated in Fig. 10. As shown, the performances of all
the data augmentation approaches vary with the increase of
the data sizes. In particular, the proposed CTGAN outper-
forms all the representative data augmentation approaches
in terms of EER, accuracy and F1 score. We note also that
deep learning-based methods overall show better perfor-
mance than geometric transformation-based methods (ex-
cept scaling on data size of 500). Moreover, we list the
corresponding EER, FAR, FRR, accuracy, and F1 score with



12

TABLE 5: EER, FAR, FRR, Accuracy and F1 Score (%) (SD) With Different Data Augmentation Methods Over Different
Data Sizes

Approach Metric 100 200 300 400 500

No Augmentation

EER 4.59 (5.74) 2.92 (3.85) 3.59 (5.72) 3.19 (3.91) 4.89 (11.02)
FAR 4.46 (5.76) 2.84 (3.91) 3.54 (5.79) 3.07 (3.94) 4.80 (11.05)
FRR 4.72 (5.74) 3.00 (3.80) 3.64 (5.67) 3.30 (3.89) 4.97 (11.00)

Accuracy 95.36 (5.74) 97.05 (3.83) 96.39 (5.70) 96.77 (3.90) 95.08 (11.01)
F1 Score 96.48 (4.58) 97.80 (2.95) 97.26 (4.50) 97.58 (2.98) 96.05 (9.92)

CTGAN

EER 3.02 (3.38) 2.56 (2.92) 3.00 (4.38) 2.76 (3.84) 3.07 (3.91)
FAR 2.99 (3.51) 2.44 (3.00) 2.92 (4.49) 2.69 (3.91) 3.01 (4.01)
FRR 3.05 (3.27) 2.67 (2.87) 3.08 (4.30) 2.84 (3.80) 3.16 (3.83)

Accuracy 96.97 (3.34) 97.40 (2.90) 96.97 (4.35) 97.20 (3.83) 96.88 (3.88)
F1 Score 97.74 (2.52) 98.07 (2.18) 97.72 (3.36) 97.91 (2.94) 97.67 (2.97)

Transformer-GAN [17]

EER 3.20 (3.22) 2.67 (3.00) 2.89 (4.39) 3.09 (3.84) 2.84 (3.17)
FAR 3.20 (3.31) 2.57 (3.08) 2.81 (4.45) 3.05 (3.90) 2.73 (3.27)
FRR 3.19 (3.16) 2.76 (2.97) 2.97 (4.35) 3.13 (3.80) 2.94 (3.13)

Accuracy 96.80 (3.22) 97.33 (3.00) 97.11 (4.38) 96.91 (3.84) 97.16 (3.18)
F1 Score 96.90 (3.12) 97.41 (2.91) 97.19 (4.27) 97.00 (3.73) 97.25 (3.09)

CWGAN [38]

EER 3.27 (3.50) 2.77 (2.79) 3.30 (4.87) 2.94 (4.09) 3.30 (3.87)
FAR 3.14 (3.60) 2.68 (2.87) 3.23 (4.91) 2.92 (4.13) 3.20 (3.93)
FRR 3.40 (3.46) 2.86 (2.77) 3.37 (4.84) 2.97 (4.05) 3.40 (3.82)

Accuracy 96.67 (3.48) 97.20 (2.78) 96.67 (4.86) 97.05 (4.07) 96.67 (3.85)
F1 Score 97.52 (2.64) 97.91 (2.10) 97.49 (3.78) 97.78 (3.12) 97.50 (2.96)

Permutation

EER 4.77 (6.13) 3.98 (4.57) 4.40 (5.92) 4.26 (5.39) 4.27 (4.51)
FAR 4.67 (6.23) 3.90 (4.65) 4.31 (5.99) 4.19 (5.47) 4.28 (4.58)
FRR 4.86 (6.04) 4.05 (4.52) 4.48 (5.88) 4.32 (5.32) 4.26 (4.45)

Accuracy 95.20 (6.09) 96.00 (4.55) 95.57 (5.90) 95.72 (5.36) 95.73 (4.49)
F1 Score 96.36 (4.81) 96.99 (3.54) 96.64 (4.60) 96.77 (4.14) 96.80 (3.46)

Scaling

EER 5.84 (8.50) 3.93 (4.65) 5.39 (7.03) 4.33 (4.90) 3.44 (4.25)
FAR 5.70 (8.49) 3.87 (4.69) 5.32 (7.07) 4.26 (4.97) 3.39 (4.33)
FRR 5.98 (8.50) 4.00 (4.63) 5.46 (6.99) 4.40 (4.86) 3.50 (4.20)

Accuracy 94.11 (8.49) 96.04 (4.64) 94.58 (7.01) 95.64 (4.89) 96.53 (4.23)
F1 Score 95.45 (6.93) 97.02 (3.56) 95.86 (5.50) 96.72 (3.76) 97.40 (3.24)

Sampling

EER 5.68 (6.71) 4.44 (5.42) 4.56 (5.61) 5.39 (9.32) 4.11 (4.93)
FAR 5.59 (6.76) 4.46 (5.53) 4.48 (5.60) 5.32 (9.40) 4.09 (5.01)
FRR 5.77 (6.67) 4.41 (5.33) 4.63 (5.63) 5.47 (9.25) 4.14 (4.86)

Accuracy 94.29 (6.70) 95.57 (5.38) 95.41 (5.62) 94.58 (9.29) 95.88 (4.90)
F1 Score 95.65 (5.33) 96.66 (4.18) 96.53 (4.35) 95.76 (8.11) 96.90 (3.78)

 AE

 Range within 1.5IQR  Median Line  Mean  Outliers

(a)

 AE

 Range within 1.5IQR  Median Line  Mean  Outliers
(b)

 AE

 Range within 1.5IQR  Median Line  Mean  Outliers

(c)

Fig. 11: EER, Accuracy, and F1 Score of MuGANs with MAu or AE over Different Unseen Users.

TABLE 6: EER, FAR, FRR, Accuracy, and F1 score (%) (SD) on MAu or AE Over Different Unseen Users

Approach Metric 10 20 30 40 50 60 69

MAu

EER 0.33 (0.60) 0.58 (1.40) 0.71 (1.45) 0.80 (1.66) 0.83 (1.81) 0.86 (1.99) 0.93 (2.15)
FAR 0.25 (0.60) 0.52 (1.44) 0.70 (1.50) 0.77 (1.68) 0.78 (1.84) 0.80 (2.00) 0.89 (2.18)
FRR 0.40 (0.62) 0.64 (1.39) 0.73 (1.42) 0.84 (1.66) 0.88 (1.81) 0.92 (1.99) 0.97 (2.13)

Accuracy 99.65 (0.60) 99.40 (1.40) 99.28 (1.44) 99.19 (1.67) 99.15 (1.81) 99.12 (1.99) 99.06 (2.14)
F1 Score 99.73 (0.45) 99.54 (1.07) 99.46 (1.10) 99.40 (1.25) 99.36 (1.40) 99.33 (1.54) 99.30 (1.63)

AE

EER 0.63 (1.58) 0.89 (1.96) 0.98 (1.93) 0.99 (1.95) 1.15 (2.09) 1.22 (2.36) 1.22 (2.47)
FAR 0.53 (1.61) 0.82 (2.00) 0.89 (1.95) 0.91 (1.95) 1.11 (2.17) 1.16 (2.37) 1.16 (2.51)
FRR 0.73 (1.56) 0.95 (1.95) 1.06 (1.92) 1.06 (1.97) 1.18 (2.03) 1.29 (2.35) 1.30 (2.45)

Accuracy 99.33 (1.57) 99.09 (1.95) 99.00 (1.92) 98.99 (1.96) 98.84 (2.07) 98.75 (2.35) 98.75 (2.47)
F1 Score 99.49 (1.21) 99.31 (1.52) 99.24 (1.48) 99.24 (1.49) 99.12 (1.60) 99.05 (1.84) 99.05 (1.89)
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data size growing from 100 to 500 in Table 5, respectively.
As described in Table 5, for the performance of the EER,
Transformer-GAN, CWGAN, and permutation gain their
best EERs of 2.67%, 2.77% and 3.98% on data size of 200,
respectively; Scaling and sampling achieve their best EERs
of 3.44% and 4.11% on data size of 500. In comparison, the
CTGAN obtains the lowest EER of 2.56% on data size of
200, by margins of 0.11% (2.67%, Transformer-GAN on data
size of 200) at least. For the performance of the accuracy,
Transformer-GAN, CWGAN, and permutation obtain their
best accuracy of 97.33%, 97.20% and 96.00% on data size
of 200, respectively; Scaling and sampling achieve their
best accuracy of 96.53% and 95.88% on data size of 500.
In comparison, the CTGAN receives the highest EER of
97.40% on data size of 200, by margins of 0.07% (97.33%,
Transformer-GAN on data size of 200) at least.

7.5 Efficiency of Memory-Augmented Autoencoder
We examine the efficiency of the MAu by comparing the
proposed MAu with the typical autoencoder (AE) [57].
We conduct the same experiment as MAuGANs evaluation
in Section 7.2 by replacing the MAu with the AE. The
corresponding results of the EER, accuracy and F1 score
of MAuGANs with the MAu or AE over different unseen
users are illustrated in Fig. 11. As demonstrated in Fig.
11, the MAu in MAuGANs overall outperforms the AE by
showing lower EER, higher accuracy and higher F1 score,
respectively. Specifically, the EERs slowly grow below 0.10%
and 0.20% (Fig. 11(a)), accuracy gradually decreases over
99% and 98% (Fig. 11(b)), and F1 score slowly reduces above
99% and 98% (Fig. 11(c)) for the MAu and AE, respectively,
as the number of unseen users increases. Moreover, the
EER, FAR, FRR, accuracy and F1 score on the MAu or AE
over different unseen users are tabulated in Table 6. As
listed in Table 6, the performance of both the MAu and
AE in MAuGANs gradually degrade with the growth of
the unseen users, but the MAu is always superior to the
AE. For the EER, the MAu achieves the best EER of 0.33%
on 10 unseen users and the worst 0.93% on 69 unseen users,
while the AE receives the best EER 0.63% on 10 unseen users
and the worst 1.22% on 69 unseen users, with improvement
margins of 0.30% and 0.29%, respectively. For the accuracy,
the MAu reaches the best 99.65% on 10 unseen users and
the worst 99.06% on 69 unseen users, while the AE obtains
99.33% and 98.75%, respectively, with improvement margins
of 0.32% and 0.31%. For the F1 score, the MAu gains the
best 99.73% and the worst 99.30%, while the AE obtains
99.49% and 99.05%, with improvement margins of 0.24%
and 0.25%, respectively. In summary, the MAu is more
effective and suitable than the AE for reconstructing user
data in MAuGANs.

7.6 Security analysis
We investigate the performance of MAuGANs in user au-
thentication against mimic attack, where an adversary is
expected to try its best to impersonate the legitimate user’s
behavioral patterns. For the mimic attack, we first select
one out of 70 subjects as the legitimate user and then inject
the random Gaussian noise ranging from 0 to 0.1, which
imitates a very tiny sensor vibration affecting the legitimate

TABLE 7: Performance (%) (SD) of MAuGANs in Defending
Against the Mimic Attack

EER FAR FRR Accuracy F1 score
3.28 (3.65) 3.09 (3.78) 3.47 (3.56) 96.72 (3.65 ) 96.72 (3.65)

user’s data. Next, we use half legitimate user’s original
data with half impersonated data as the test data to verify
the corresponding legitimate user’s MAu. We repeat the
above experiments (70 times) until each of the 70 subjects
is selected as the legitimate user once. The performance
of MAuGANs in defending against the mimic attack is
tabulated in Table 7. As shown, MAuGANs achieves 3.28%
EER, 3.09% FAR, 3.47% FRR, 96.72% accuracy and 96.72% F1
score. That is to say, the unique accelerometer and gyroscope
sensor data are still hard to imitate by an adversary with
similar behavioral patterns. Note that we did not train a
user to mimic the legitimate user’s behavioral patterns, as
the data with small amount of added noise are closer to the
real data.

7.7 Comparison with representative methods

We show the superiority of the proposed MAuGANs by
comparing MAuGANs with the state-of-the-art authenti-
cation methods with data augmentation, namely Senso-
rAuth [30], RobustTAD [31], FRDA-HAR [32], EchoPrint
[33], CAuSe [34], MODALS [36], Expert–gatingCNN [37],
CAGANet [38], and ADFFDA [17], as listed in Table 8. As
shown in Table 8, we display the methods, data source, data
augmentation approaches, and accuracy for these state-of-
the-art data augmentation approaches. Concretely, Senso-
rAuth utilizes five transformation methods, namely permu-
tation, sampling, scaling, jittering, and cropping, to gener-
ate acccelerometer and gyroscope sensor data and gains a
19.04% EER with data size of 100 on the OC-SVM classifier
[30]. RobustTAD uses flipping and downsampling in the
time domain, and magnitude and phase in the frequency
domain on the U-Net-DeWA dataset with data size of 100
to reach a F1 score of 87.25% [31]. FRDA-HAR exploits
the local averaging as a downsampling technique to cre-
ate accelerometer and gyroscope sensor data for human
activity classification and reaches a 88.14% accuracy with a
deep LSTM classifier and batch size of 8000 [32]. EchoPrint
explores the projection matrix rotation imitating different
camera poses to augment face images and obtains 81.78%
balanced accuracy (BAC) with vision features [33]. CAuSe
utilizes an AAS-based optimal strategy for the accelerom-
eter, gyroscope and magnetometer data augmentation, and
achieves an accuracy of 91.12% and EER of 5.68% on the
LOF classifier with data size of 100 [34]. MODALS uses four
universal data transformation operations, namely hard ex-
ample interpolation, hard example extrapolation, Gaussian
noise and difference transform, to augment HAR data, and
reaches a 91.87% accuracy on the MLP classifier with 256
units [36]. Expert–gatingCNN exploits expert networks and
gate networks to search for optimal weights for four-corner
cropping and center cropping along with flipping to realize
data augmentation for activity classification. It reaches a
76% accuracy on the gating classifier with 224 × 224 video
flips [37]. CAGANet utilizes a conditional Wasserstein GAN
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TABLE 8: Comparison With Data Augmentation Based Authentication Approaches

Method Data Source Data Augmentation Approach Accuracy (%)
SensorAuth [30] Acc., Gyr. permutation, sampling, scaling, cropping, jittering EER: 19.04 (OC-SVM, 100)
RobustTAD [31] Time-series Flipping, downsampling, magnitude, phase F1: 87.25 (U-Net-DeWA, 100)
FRDA-HAR [32] Acc., Gyr. Downsampling Acc: 88.14 (DLSTM, 8000)
EchoPrint [33] Face image Rotation BAC: 81.78 (vision features)
CAuSe [34] Acc., Gyr., Mag. AAS-based optimal strategy Acc: 91.12; EER: 5.68 (LOF, 100)
MODALS [36] Acc., Gyr. interpolation, extrapolation, Gaussian, transform Acc: 91.87 (MLP, 256)
Expert–gatingCNN [37] Video cropping, flipping Acc: 76.00 (gating, 224× 224)
CAGANet [38] Acc., Gyr., Mag. CWGAN Acc: 90.08; EER: 8.78 (LOF, 100)
ADFFDA [17] Acc., Gyr., Mag. Transformer-GAN EER: 1.62 (OC-SVM, 700)
MAuGANs Acc., Gyr. CTGAN Acc: 99.06; EER: 0.93 (69 unseen users)

(CWGAN) to create acccelerometer, gyroscope, and magne-
tometer data and reaches an accuracy of 90.08% and an EER
of 8.78% with data size of 100 on the LOF classifier [38].
ADFFDA uses a transformer-based GAN to augment acc-
celerometer, gyroscope, and magnetometer data and obtains
an EER of 1.62% on the OC-SVM classifier with a dataset of
size 700 [17].

Comparing to the state-of-the-art data augmentation-
based authentication methods, MAuGANs utilizes the con-
ditional transformer GAN to augment accelerometer and
gyroscope sensor data and achieves the best accuracy of
99.06% and EER of 0.93% with 69 unseen users (the worst
case).

8 CONCLUSION

In this paper, we have presented a lightweight and prac-
tical continuous authentication system, named MAuGANs,
based on the CTGAN and MAu, leveraging the smartphone
accelerometer and gyroscope built-in sensors. MAuGANs
uses the CTGAN to augment sensor data for the authen-
tication model that is trained on multiple users’ data si-
multaneously. To identify users, MAuGANs exploits the
MAu which is trained only on the legitimate user’s data. In
MAuGANs, the user performs widely-adopted operations
on the commercial mobile devices, which are implicitly
processed without user’s awareness, for his/her continuous
authentication. We validate the performance of MAuGANs
on our dataset, and the extensive experiments demonstrate
that MAuGANs outperforms the representative state-of-the-
art approaches. Nonetheless, although MAuGANs achieves
superior performance, it highly relies on user behaviors
during a short enrollment phase, making it incapable of
dealing with an ever-changing user pattern. To address this
issue, we can make the enrollment phase longer to allow the
behavior converges to a stable state, or repeat the enrollment
phase periodically. In addition, our data were collected on
predefined tasks and proper experimental devices, which
limits the applicability of MAuGANs. To address this lim-
itation, we plan to collect comprehensive data on more
common tasks (e.g., application usage, interactive game
playing, or web browsing) and different types of devices
(e.g., tablets, smartwatches, or smartphones) under different
experimental conditions (e.g., standing, sitting or walking;
indoor or outdoor). Furthermore, we plan to train a user to
mimic the legitimate user’s behavior to further enhance our
threat model.
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