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Abstract

Freezing of gait is a serious symptom of Parkinson’s disease that increases the risk of injury 

through falling, and reduces quality of life. Current clinical freezing of gait treatments fail 

to adequately address the fall risk posed by freezing of gait symptoms, and current real-time 

treatment systems have high false positive rates. To address this problem, we designed a closed-

loop, non-intrusive, and real-time freezing of gait detection and treatment system, FoG-Finder, that 

automatically detects and treats freezing of gait. To evaluate FoG-Finder, we first collected 716 

freezing of gait events from 11 patients. We then compared FoG-Finder against other real-time 

systems with our dataset. Our system was able to achieve a 13.4% higher F1 score and a 10.7% 

higher overall accuracy while achieving a reduction of 85.8% in the false positive treatment 

rate compared with other validated real-time freezing of gait detection and treatment systems. 

Additionally, FoG-Finder achieved an average treatment latency of 427ms and 615ms for subject-

dependent and leave-one-subject-out settings, respectively, making it a viable system to treat 

freezing of gait in the real-world.
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1 Introduction

Over 10 million people in the world have Parkinson’s Disease (PD) with an estimated 

90,000 new diagnoses per year (up from 60,000) in the United States alone [51]. Roughly 

60% of PD individuals experience Freezing of Gait (FoG), a potentially dangerous symptom 

of PD. FoG is the abrupt stoppage of normal gait wherein the individual is unable to take 

effective forward steps. FoG can also result in decreased forward and lateral stability. The 

risk of falling and sustaining serious injury as a result of FoG increases with the progression 

of the disease over time [29]. For this very reason, FoG is dangerous and results in a lower 

quality of life for those with PD.

At present, PD is incurable but treatments exist to reduce the severity of FoG symptoms. 

Current clinical treatments include medications such as Carbidopa-Levodopa [48] or deep 

brain stimulation surgery (DBS) [41] which may reduce the severity and frequency of FoG 

events, but the risk of falling will still remain. Other treatments that currently exist require 

manual user input [11] or provide constant cuing [32]; since FoG is sudden and may give no 

warning, these treatments are inadequate to address the fall risk posed by FoG symptoms. 

Vibration therapy and auditory cuing can reduce the severity of FoG symptoms or fully 

abort FoG events when they occur [1, 22, 38, 52]. However, habituation where the patient 

becomes accustomed to these treatments can reduce treatment efficacy if these treatments 

are activated too often or in predictable sequences. As such, there is a clear need for an 

accurate, non-intrusive, and portable real-time FoG detection system for automatic, real-time 

treatments to be effective. The need for such a system leads us to our main research 

question: How can we accurately detect and treat FoG events in real-time?

To answer this research question, we developed FoG-Finder, a closed-loop, non-intrusive, 

and portable FoG detection and treatment system consisting of Inertial Measurement Unit 

(IMU) sensors, a smartphone, and vibration therapy devices. To accurately detect FoG, we 

first generated additional time-series features to address different ways patients can freeze. 

We transform our time-series features into the frequency domain using separate Butterworth 

(BW) filters to extract information for frequency bands that dominate normal gait cycles 

and FoG events. We then used a multi-input Convolutional Neural Network (CNN) model in 

order to allow our model to capture patterns within the normal gait frequency band and FoG 

event frequency band separately.

To evaluate our system, we collected data from 11 PD patients from May 2021 to present in 

an IRB approved study. To the best of our knowledge, our dataset is the most FoG-rich IMU 

sensor dataset to date with over 700 clinically labeled FoG events. Our dataset was designed 

to capture a wide variety of FoG events from the 5 most common FoG triggering scenarios. 

We evaluated our work against other real-time FoG detection and treatment systems using 

our dataset, and demonstrate that our system provides a significant performance boost of 

13.4% higher F1 score and 10.7% higher overall accuracy over existing FoG detection and 

treatment systems in a leave-one-subject-out (LOSO) scenario.

FoG detection is a heavily studied area of research with many works proposing different 

detection methods. However, few works focus on detection in real-time and even fewer 
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demonstrate their methodology is capable of functioning in real-time using portable 

hardware. Bachlin et al. [4, 5] proposed what we believe to be the first functional real-time 

FoG detection and treatment system, using thresholding of frequency powers to detect FoG 

symptoms. They achieved 73.1% and 81.6% sensitivity and specificity, respectively, on their 

10 patient dataset (DAPHNET) in a LOSO setting. Mazilu et al. [26] used time domain 

and frequency domain features with adaboosted C4.5 trees to achieve 66.3% and 95.4% 

sensitivity and specificity, respectively, with the DAPHNET dataset under LOSO conditions. 

Both Bachlin and Mazilu use features that condense temporal data down to singular values 

which results in a loss of information. Our work uses BW filters to extract useful frequency 

information while maintaining the temporal nature of the data. Naghavi et. al [30] proposed 

their DGAD system in 2021 which used a single BW filter on time-series data and a 

deep CNN to detect FoG. They achieved 63.0% and 98.6% sensitivity and specificity, 

respectively, on their 7 patient dataset in a subject-dependent setting. Different from DGAD, 

FoG-Finder separates the normal gait and FoG frequency bands for input to our CNN 

model, improving it’s ability to distinguish FoG events. What separates these works from 

many other FoG detection papers is that their methods are proven to be real-time on 

portable computing systems, and therefore practical for real-world application. We faithfully 

implemented their respective methods and compared their works against FoG-Finder using 

our dataset. Compared with these works, FoG-Finder achieves 13.4% higher F1 score and 

10.7% higher overall accuracy while achieving a reduction of 85.8% in the false positive 

treatment rate.

Our contributions are summarized as follows:

• We devised a close-loop, portable system with a real-time evaluation that was 

deployed over several months and is accepted by patients.

• We filtered our IMU data with separate BW filters to extract frequency data 

for the typical gait frequency and FoG frequency bands whilst still maintaining 

the temporal nature of the data. We input these frequency bands into our CNN 

model separately which improves performance over related works that combine 

frequency band data.

• Our system design provides a performance increase of 13.4% higher F1 score 

and 10.7% higher overall accuracy compared to other real-time FoG detection 

systems when evaluated under a LOSO setting.

• Our FoG dataset is the most FoG-rich dataset to date with at total of 716 FoG 

events across 11 patients and contains freezes from the five most common FoG 

triggering scenarios. We are still collecting data from new patients through 2023, 

and our dataset will be made publicly available upon the conclusion of our study.

The remainder of this paper is structured as follows: Section 2 describes a high-level view 

of our FoG detection and treatment system. Section 3 provides details about the specific 

features we chose to use for FoG detection. Following this, Section 4 describes our FoG 

detection model design. Next, we provide information about our clinical data collection 

process and testing protocols in Section 5. We then compare our work against other real-time 
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FoG detection systems with a robust performance evaluation in Section 6. Section 7 contains 

a detailed related work. Finally, we conclude the paper in Section 8.

2 Real-time FoG Detection and Treatment System

There are several requirements for real-time FoG detection and treatment systems to be 

viable. First, systems must be non-intrusive and portable in real-world environments. 

Second, systems need fast and real-time FoG detection. The latency from FoG onset to 

treatment must be below 1s to prevent falls, but faster treatment activation is desirable. 

Finally, systems must be in-situ: if FoG occurs, then the system must detect and treat the 

event. Failing to detect an FoG event could result in the patient falling and sustaining injury.

Our system consists of three main components: IMU sensor bands, vibration treatment 

devices, and an Android smartphone. Figure 1 provides a high-level overview of our closed-

loop system.

IMU sensor bands:

For FoG-Finder, we used the Ultigesture (UG) wearable IMU sensor platform [54]. The 

UG platform samples data at a rate of 100Hz, contains a 3-axis accelerometer and 3-axis 

gyroscope, and is smartphone compatible using Bluetooth (BT). Additionally, the UG 

devices are inexpensive, costing around $10 each. A desired, but not required aspect would 

be for FoG-Finder to fulfill the important requirements listed above while also remaining 

inexpensive for patients. Patients wear a UG device on each ankle.

Vibration Treatment Device:

The vibration treatment device is the PDVibe3 [1, 52]. The device is ankle worn and 

provides vibrotactile treatment directly to the feet of the patient. Vibration therapy has been 

shown to be an effective FoG treatment in reducing the frequency and severity of FoG 

symptoms [22, 38].

Android Smartphone:

We use an Android smartphone, the Google Pixel 4a, as the portable computer which 

processes the IMU data stream sent via BT. The smartphone contains our FoG detection 

neural network which performs the FoG classification. Should FoG be detected, the 

smartphone activates the vibration treatment. Our FoG-Finder application requires no user 

input or communication with any cloud device in order to detect and treat FoG making it 

suitable for real-world environments.

Figure 2 provides an overview of the flow of data within the smartphone. Our app uses the 

most recent 1.28s of data from the left and right UG data streams; these 1.28s windows of 

data are first normalized separately before being combined and filtered with two different 

BW bandpass filters for the normal gait and FoG frequencies. These two filtered windows 

are inputted separately into our CNN model. To ignore singular erroneous predictions, we 

used consecutive class post-processing to determine if treatment should be activated.
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The UG devices and PDVibe3s are placed on the ankle about 45° outward from the rear of 

the ankle. Figure 3 shows this placement on the ankle. This placement is non-intrusive 

for the patient and the devices can easily be hidden under pants or socks to remain 

inconspicuous. Section 6.4 of the evaluation provides details about patient responses to 

questions about device comfort. Vibration therapy can be applied directly to the sensitive 

locations of the foot rather than another part of the body. We placed an IMU on each ankle 

because FoG symptoms may appear on only one foot, otherwise known as asymmetric 

freezes. During an asymmetric freeze, one foot is capable of taking effective steps forward 

while the other foot cannot be effectively picked up. We want to capture information from 

both feet to account for this possibility.

3 FoG Detection Feature Extraction

3.1 Time Domain Features

There are six sensor readings recorded every 10ms (AX, AY, AZ, GX, GY, GZ) per IMU. 

For each group of six sensor readings, we compute the magnitude of the acceleration and 

gyroscope signals using the standard magnitude formula provided below:

Mag X, Y , Z = X2 + Y 2 + Z2 (1)

Additionally, we compute the magnitude of the acceleration and gyroscope without the 

Y component. Mag(AX,AZ) provides information useful for identifying pivot turns – 

turns where the patient slides their feet on the floor to rotate without lifting their heels. 

Mag(GX,GY) is useful for straight path FoG freeze detection, especially since straight path 

freezes are less common than turn freezes in our dataset. The result of these new feature 

computations is 10 data points per IMU every 10ms.

For training FoG-Finder models, we chunk the data stream into 1.28s windows with a 

step size of 20ms. We chose 1.28s as the window size because 1.28s is long enough to 

capture a full gait cycle, but short enough to not include redundant past gait information. 

Additionally, previous works studying FoG have determined that while smaller window 

sizes yield reduced per-window performance, it also tends to yield lower latency for FoG 

detection [26].

We normalize the left and right UG data separately because PD is often accompanied 

by other gait deficiencies such as ataxia, dystonia, and dyskinesia [12, 14, 44]. These 

deficiencies may lead to patients having different gait cycle characteristics for each leg. 

Additionally, we normalize each patient’s data individually rather than normalizing all 

patient data together. The primary reason we do this is to avoid the compression of patient 

data. Patient characteristics such as leg length, stride length, and stride speed influence a 

patient’s gait pattern.

The FoG-Finder model described in Section 4 is a CNN-based architecture. The data from 

each UG device is temporally related – ie: it is important for our CNN model to learn 

that the left and right UG streams are connected by time. To achieve this, we combine the 

left and right UG data in a way that the convolutional windows of our FoG-Finder models 
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capture left and right sensor axes together. Figure 4 provides a visual describing this process. 

When this process is complete, we end with a data shape of (128,20,1) for each window. 

Windows that had 30% or more overlap with FoG time segments were labeled as FoG.

3.2 Frequency Domain Features

Moore et al. [28] showed that two distinct frequency bands exist for normal gait cycles 

and FoG events. Normal gait cycles typically have a dominant frequency within 0.5–3Hz 

while FoG events typically have a dominant frequency between 3–8Hz. It is understood 

that the frequency pattern identified by Moore et al. persists between different PD patients 

experiencing FoG even with different gait characteristics. As such, inclusion of frequency 

domain features is important for FoG detection for LOSO analysis.

We use 5th order BW bandpass filters with the Morlet wavelet pattern to extract frequency 

domain data from the time domain. We chose BW filters because they capture frequency 

information from time-series data while being less computationally expensive as FFT or 

CWT since fast execution time is important. We use a 0.5–3Hz BW bandpass filter on our 

time-series data which generates a new (128,20,1) shape containing filtered gait frequency 

band data. We also use a 3–8Hz BW bandpass filter on our time-series data separately 

to generate data of shape (128,20,1) which contains information pertaining to the FoG 

frequency band.

4 FoG Detection Model Design

We elected to use a multi-input CNN-based architecture for FoG detection for two reasons. 

First, convolutional layers are fast, an order of magnitude faster than long short-term 

memory (LSTM) neural networks [50], which is important since our model must be fast to 

ensure we maintain low FoG detection latency on mobile hardware. Second, CNNs capture 

special relationships between data from different points in time making them suitable for 

FoG detection. Figure 5 provides an overview of our FoG-Finder model. Our model consists 

of two separate sections each consisting of three convolutional layers. Features generated 

by convolutional layers become more complex with each layer with the features of the 

first convolutional layer being more generalized than later layers. FoG detection is an 

inherently hard problem because of the many different ways patients can experience FoG. 

Therefore, we chose three convolutional layers because our network is deep enough to 

capture more complex patterns associated with FoG while still maintaining low computation 

time. Additionally, there is a low risk of experiencing the vanishing gradient problem with 

just three convolutional layers.

Since feature representations become more complex with CNN depth, we double the number 

of filters used after each convolutional layer. The increased number of filters with CNN 

depth allows our model to capture more unique representations of the features. Between 

each convolutional block containing a convolutional layer, batch normalization, and ReLU 

activation, we perform max pooling to down-sample the features which helps reduce 

computation time of the later layers of our model as well as reduce over-fitting. Past works 

with frequency thresholding [4, 5, 16, 28] found success and insight into FoG detection 

by looking at the gait frequency and FoG frequency bands independently. We applied this 
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principle when developing our model. We input the gait frequency band and FoG frequency 

band data into the model separately in order to allow the model to extract features for each 

of these frequency bands independently. As we will show in Section 6, this architecture 

out-performs real-time FoG detection systems that use either frequency thresholding or use 

CNN models that combine these frequency bands.

To avoid singular, erroneous FoG classifications from the FoG-Finder model triggering 

treatment, we use N consecutive FoG classifications to determine if treatment should be 

activated. For our study described in Section 5, N is 2. A lower N leads to less latency 

from FoG onset to treatment with the possibility of more false treatments while a higher 

N leads to more treatment latency with fewer false treatments. The execution time for our 

CNN model is <35ms and the execution time to generate our BW features is under <25ms. 

In total, the execution time of FoG-Finder is <60ms per window.

5 Clinical Data Collection

5.1 Patient Demographics and Selection

Patients were admitted to our study with the goal of collecting a large, FoG-rich dataset 

containing FoG events initiated by the top five FoG triggering scenarios [20]. A FoG 

triggering scenario is an environmental or circumstantial factor that leads PD patients to 

freeze. The five most common FoG triggering scenarios are show in Figure 6 and are listed 

as follows: 6a: 540° turns, 6b: dual tasking (such as counting down from 100 by 7s while 

walking), 6c: walking through a narrow archway, 6d: walking towards a visual target (such 

as a chair to sit down), and 6e: time sensitive tasks (such as walking towards a ringing 

phone).

To be admitted to our study, patients must have been diagnosed with PD and experience 

FoG events triggered by at least two of the five FoG triggering scenarios. Table 1 provides 

an overview of the FoG events collected from the patients in our study. In total, we have 

collected 716 FoG events with a mean freeze time of 5.746s and median freeze time of 

3.378s.

5.2 Data Collection Protocol

5.2.1 Test Environment Design—When designing our test environment, we wished 

to avoid problems present in past FoG datasets. It is common for past FoG datasets to be 

heavily imbalanced with the amount of non-FoG time greatly exceeding that of FoG time. 

Additionally, some FoG datasets lack protocols designed to collect FoG events caused by 

specific FoG triggering scenarios. It is not known at this time if FoG events induced by 

different triggering scenarios are distinguishable. Therefore, it is important that FoG datasets 

include a diverse range of triggering scenarios since a “narrow” dataset focusing on just one 

or two triggering scenarios may falsely give the impression that models evaluated on it are 

suitable for diverse scenarios.

Our test environment was specifically designed to induce as many FoG events as possible 

in a short amount of time. Unlike other datasets such as DAPHNET [4], we do not have a 

simulated daily living part of our study; we do this for several reasons. First, the scenarios in 
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our study are used by our clinicians assess FoG symptom severity and track PD progression 

in patients. Second, unstructured tests may lead to long segments absent of FoG since 

patients can avoid environmental factors that cause them to freeze. Our protocol allowed us 

to collect significantly more freezes than previous FoG datasets. Our dataset was collected 

in two phases as part of our study. All tests were conducted under an approved IRB 

protocol, IRB-HM20020085. Below, we will explain the purpose of each phase along with 

the characteristics of the protocols used for each phase.

5.2.2 Phase 1 Protocol—In Phase 1, data was collected from 6 patients in 2021. Each 

patient completed one visit and no vibration treatment was provided. These visits were short 

with each patient walking less than 10 minutes primarily because of COVID-19. Patients 

walked on a narrow Protokinetics ZenoMat [23] in a large physical therapy room. The 

ZenoMat is slightly softer than the floor of the room, and the data collected by the ZenoMat 

was not used for this specific study. Patients completed up to 8 short walks with the longest 

walk being two minutes. Each walk contained at least one FoG triggering scenario. Patients 

had no restrictions for footwear or clothing during each test. To ensure that we collected 

data for both left and right turns, Phase 1 contained two walking tests which specified which 

direction patients should turn.

5.2.3 Phase 2 Protocol—Patients completed two visits in Phase 2. Visit 1 was used 

to collect data to train a subject-dependent model, and visit 2 was for autonomous FoG 

detection and treatment. Patients that did not freeze in at least 2 of the 5 FoG triggering 

scenarios or froze less than 5 times during visit 1 were removed from the study. Our goal is 

not only to build robust subject-dependent models, but also to capture as many FoG events 

from each FoG triggering scenario so that future FoG detection systems may be evaluated 

against a diverse range of freezes. Figure 6 provides diagrams detailing the environment 

setup for each test used in Phase 2. During visit 1, each patient completed five 2-minute 

walks where each walk contained a different FoG triggering scenario. During visit 2, each 

patient completed 3 rounds of five 2-minute walks with FoG-Finder activating treatment 

when FoG was detected.

Patients wore both the UG sensor bands and PDVibe3 devices during both visits. We had 

patients wear the PDVibe3 devices during the first visit so that they could get used to 

walking with the devices attached to their ankles. Shoes and socks were provided to the 

patients during Phase 2 to ensure the shoes could accommodate the vibration tactors from 

the PDVibe3s, but patients had no other clothing restrictions. If a subject wore pants, they 

could elect to wear the devices outside or inside their pants or roll their pants up. This 

freedom is meant to reflect how clothing could impact the resting position of the UG sensors 

according to patient preferences during real-world deployment. For treatment during Phase 

2, the system would apply 2 seconds of vibration followed by 1 second of downtime before 

the next vibration treatment could be applied. 2 seconds of vibration was chosen because 

vibration has a cumulative and immediate effect [22, 38].
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5.3 Clinical Data Labeling

Differences in clinical FoG data labeling can make direct comparisons between FoG 

detection works using different FoG datasets difficult. First, there is no defined video 

labeling standard for clinical labeling of FoG which is used by all PD research groups, 

especially for how timestamps are assigned for the start and stop of FoG events. As 

such, different methodologies for FoG label assignment can have a significant influence 

on treatment latency evaluations and overall FoG detection model performance. Works 

unveiling a new FoG dataset should describe the data labeling process such as the number of 

labelers, the method for consensus building, and the specific criteria for identifying FoG and 

assigning start and stop labels. For our FoG dataset, we use the protocol defined by Dr. Gilat 

[15] in 2019 which is a revised version of the definition of FoG provided by Nutt et al. [33] 

in 2011.

FoG Start Identification:

Timestamp when the patient is no longer able to take effective forward steps with one or 

both feet while maintaining the intention of walking. Patient is displaying symptoms of FoG 

such as trembling, shuffling, or akinesia.

FoG End Identification: To affirm that FoG has ended, the patient must take at least two 

consecutive, effective alternating steps without displaying symptoms of FoG. Timestamp the 

initial toe-off of the first effective step in the sequence of consecutive, effective steps. Note: 

If one foot is able to take effective steps forward while the other foot displays symptoms of 

FoG, it is considered the same FoG event.

Consensus Building: Two experienced PD clinicians (20+ years of clinical experience 

with PD patients) labeled our dataset with two additional researchers present for annotation. 

Discussion of a potential FoG event continued until both PD clinicians were in agreement 

about a label.

Abnormal Gait: FoG events are not always easy to distinguish from abnormal gait. For 

the few events that were deemed a “toss-up”, the question “Would the patient benefit from 

treatment?” was used as a tie-breaker wherein if the answer was “Yes”, then the event was 

labeled as FoG.

6 Evaluation

In this section, we detail the factors that make comparison between different FoG detection 

works difficult and explain the most important evaluation criteria for evaluating FoG 

detection systems. We then compare FoG-Finder against other validated, real-time FoG 

detection works under subject-dependent and LOSO settings using our dataset.

6.1 Evaluation Methods

There are several factors that make direct comparison between different FoG detection 

works difficult. Below is a list of factors we believe need to be described in detail when 

comparing different FoG detection works:
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1. Different methods for assigning non-FoG and FoG labels to windows (such as 

the % of FoG required for a window to be labeled as FoG).

2. Different window sizes as input for FoG classification (such as comparing results 

from models using 1s windows to models using 4s windows).

3. Inclusion/exclusion of windows containing both non-FoG and FoG data 

(exclusion is expected to increase performance).

4. Diversity of FoG events present in the evaluation dataset.

5. The use of different performance metrics. For performance metrics, there are 

three types of performance evaluation for window-based FoG detection systems: 

FoG window level, FoG event level, and treatment latency.

FoG Window Level Evaluation: FoG window level evaluation concerns each individual 

classification made by a model for windows of a fixed size W. Important metrics to provide 

are precision, recall, and F1 score because FoG datasets are usually heavily imbalanced 

favoring non-FoG time. Overall accuracy should also be reported. Finally, the false positive 

windows rate should be shown to provide information about how much error at the per 

window level is expected over time. Some methods may achieve high FoG recall at the 

expense of FoG precision which will lead to a high false positive treatment rate when 

evaluating at the FoG event level.

FoG Event Level Evaluation: FoG event level concerns model performance in detecting 

each FoG event which span multiple windows. It is important to show FoG event detection 

accuracy - the number of FoG events detected by the system against the number of FoG 

events labeled by clinicians - to gauge how many freezes would be left untreated by the 

system. Furthermore, since habituation is a risk for real-time treatments, the false positive 

treatment rate should be shown to identify how many unneeded treatments are likely to be 

applied over time.

Treatment Latency: Treatment latency concerns the time it takes for a system to treat 

a FoG event from the onset of the event. Generally speaking, a system should activate 

treatment within 1s of FoG onset to have the possibility of preventing a fall.

We have identified three main works that not only proposed FoG detection and treatment 

systems, but also validated their systems on portable hardware to prove that they are suitable 

for real-world deployment. These works are Bachlin et al. [4, 5], Mazilu et al. [26], and 

DGAD [30]. We provide a detailed explanation of these works in Section 7.1. To ensure 

that our evaluation against these works is robust and unencumbered by the evaluation 

factors listed above, we faithfully implemented these systems according to the specifications 

provided in their respective manuscripts so that they may be evaluated on our dataset. 

Additionally, we ensured that feature generation for each system used 1.28 windows of data 

so that the FoG window level performance evaluation was comparable between their works 

and ours. The method of assigning non-FoG and FoG labels to data windows was kept the 

same for all works.
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6.2 Subject-Dependent Evaluation

Subject-dependent FoG modeling involves training and testing with data from the same 

patient. As such, performance is expected to be higher for models trained in this fashion 

over LOSO. In order for a subject-dependent evaluation to be valid, temporal consistency of 

the data must be maintained at the per-window level - ie: the training and test sets must not 

contain overlapping windows. This is a form of data leakage since overlapping windows will 

share the same feature space. This form of data leakage is unfortunately present in many past 

FoG detection works. To solve this problem for Phase 2 patients, we include the entirety of 

the patient’s visit 1 data in the training/validation sets while the entirety of the patient’s visit 

2 data is reserved for testing.

For FoG-Finder and DGAD, the training/validation sets consisted of a 90/10% split for the 

data from all other patients and visit 1 of the test patient. Temporal consistency is maintained 

for non-FoG and FoG events during the generation of the training and validation sets. The 

training and validation loss was closely monitored for these models to ensure they did not 

overfit. Class weights were used to address the imbalanced nature of our dataset since only 

40% of our dataset is FoG. The training set for Mazilu includes only visit 1 from the test 

patient to mirror the the way their system was trained in their work. Since Bachlin’s method 

uses frequency thresholding for FoG detection instead of machine learning, visit 1 was used 

to determine the optimal threshold for FoG detection for each patient.

6.2.1 FoG Window Level Accuracy—Figure 7 shows the precision, recall, F1 score, 

and overall accuracy of FoG-Finder compared with Bachlin, Mazilu, and DGAD. Figure 8a 

compares the false positive window rate between FoG-Finder and these works. FoG-Finder 

achieves a 9.0%, 28.8%, 8.5% higher F1 score and 6.1%, 22.9%, 7.6% higher accuracy 

than Bachlin, Mazilu, and DGAD, respectively, while maintaining a reduction of 67.4%, 

523.2%, 248.1% in the false positive window rate for these works, respectively. DGAD uses 

a 5 convolutional layer model with the raw time-series data (AX,AY,AZ,GX,GY,GZ) filtered 

with a single 0.5–8Hz BW filter. Since DGAD does not separate the gait band and frequency 

bands like FoG-Finder and does not use additional features designed to distinguish certain 

aspects of human gait, DGAD falsely predicts normal gait as FoG significantly more often 

than FoG-Finder. These figures show the performance of each of the systems without post-

processing (if applicable) to determine if treatment is activated. Post-processing is utilized 

for FoG event level performance below.

6.2.2 FoG Event Level Accuracy—For FoG event level detection, post-processing is 

used after model classification to determine if treatment should be activated for FoG-Finder 

and Mazilu. FoG-Finder uses consecutive class post-processing described in Section 4. 

Mazilu uses the majority of the last 15 window classifications to decide if FoG occurred. 

DGAD and Bachlin do not have a method of post-processing after classification.

Habituation is a serious issue for vibrotactile and auditory FoG treatments because if a 

treatment is activated too often when not needed, there is a serious risk that the patient will 

become accustomed to the treatment and subconsciously ignore it. To reduce this risk, it 

Koltermann et al. Page 11

IEEE Int Conf Connect Health Appl Syst Eng Technol. Author manuscript; available in PMC 2023 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



is desirable to reduce the false positive treatment rate while maintaining high FoG event 

accuracy and low treatment latency.

Figure 8b shows the number of correctly identified and treated freezes each real-time 

system. Figure 8c shows the FPTR of each system using the treatment protocol described 

in Section 5.2.3. All systems had comparable performance for identifying and treating true 

positive FoG events, but FoG-Finder achieved this performance while maintaining a 182.9%, 

212.6%, 143.4% reduction in the average false positive treatment rate over Bachlin, Mazilu, 

and DGAD, respectively.

6.2.3 Treatment Latency—Treatment latency is the time difference between the 

timestamp for FoG onset of according to the clinical label and the time a system would 

activate treatment. Figure 8d compares the latency from FoG onset to treatment activation 

of FoG-Finder against Bachlin, Mazilu, and DGAD under subject-dependent conditions. 

Our average treatment latency in a subject-dependent setting is 427ms. To recap, it takes 

<60ms to create our BW features and perform a single FoG classification using our CNN 

model as stated in Section 5. The rest of the latency time comes from waiting until an 

adequate amount of FoG time has occurred for FoG-Finder to accurately identify an FoG 

event has started. This 427ms latency is only +78ms over the lowest average latency of 

349ms achieved by DGAD. We believe that this small increase in latency over DGAD 

is acceptable given that FoG finder achieves a reduction in false positive treatment rate 

of 143.4%. Given these results, we purport that FoG-Finder achieves the requirement of 

being fast and real-time under subject-dependent conditions. Mazilu’s latency of 1219ms is 

significantly larger than our work due to their method of post-processing using a majority 

vote for the last 15 classifications. Bachlin and DGAD have similar treatment latency’s to 

FoG-Finder, but have significantly higher false treatment rates. We believe this is the case 

because our system has features designed to address normal turns where the patient only 

minimally lifts their ankle.

6.3 Leave-One-Subject-Out Evaluation

For LOSO analysis, data from one patient is reserved for testing while the data for all other 

patients is used for training and validation. The only patient not used for LOSO testing is 

P6 because they did not have any FoG events. For a LOSO evaluation to be valid, no data 

from the test patient may be used for training as this would otherwise be a subject-dependent 

evaluation. For Phase 2 patients, we complete our LOSO analysis using visit 1 since patients 

in Phase 1 completed only one visit.

6.3.1 FoG Window Level Accuracy—Figure 9 compares the LOSO window level 

performance of FoG-Finder against Bachlin, Mazilu, and DGAD while Figure 10a shows the 

false positive window rate produced by each system. FoG-Finder provides a performance 

increase of 13.4%, 27.0%, 15.4% higher F1 score and 10.7%, 17.4%, 22.6% higher 

overall accuracy than Bachlin, Mazilu, and DGAD, respectively. FoG-Finder achieves 

this performance with a significantly lower false positive rate of −96.9%, −120.0%, and 

−370.8% against these works, respectively. All works achieved a lower overall performance 

with LOSO analysis when compared with subject-dependent analysis which was expected. 
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The variability in performance between the patients can be possibly attributed to whether or 

not the test patient’s FoG events and normal gait share part of the feature space of the FoG 

events and normal gait of the training patients. Since the majority of PD patients will have 

normal gait present in the 0.5–3Hz band and FoG present in the 3–8Hz band, separating 

these frequency bands in our FoG-Finder model allowed our model to generalize better than 

the other works.

6.3.2 FoG Event Level Accuracy—Figure 10b shows the number of correctly 

identified FoG events for each real-time FoG detection system. Figure 10c shows the false 

positive treatment rate for Bachlin, Mazilu, DGAD, and FoG-Finder. FoG-Finder achieves 

similar FoG event detection as the other FoG detection systems while achieving an average 

LOSO false positive treatment rate reduction of 123.1%, 85.8%, 178.8% when compared 

with Bachlin, Mazilu, and DGAD, respectively. Given that it is imperative that a real-time 

FoG detection and treatment system treats every FoG event, we find these results satisfactory 

that our system could be deployed with unseen patients and still provide treatment for each 

FoG event.

6.3.3 Treatment Latency—Figure 10d compares the treatment latency of FoG-Finder 

against the comparison works. FoG-Finder achieves an average treatment latency of 615ms 

across 10 patients which affirms that FoG-Finder is both a fast and real-time FoG detection 

and treatment system. Bachlin and DGAD achieve lower latency than FoG-Finder at the 

expense of much higher false positive treatment rates.

6.4 User Feedback

User feedback concerning the comfort of our FoG-Finder system is important because 

even if a FoG detection and treatment system is effective at preventing or reducing FoG 

symptoms, patients may be reluctant to use it if the system is uncomfortable or intrusive. 

Our study does not have patients answer questions about system comfort since our PD 

clinicians are conducting a parallel study with the PDVibe3s with a large group of patients 

(n = 39); this study does receive feedback about device comfort. In this study, patients wear 

the PDVibe3 devices but not the UG devices. We believe that the user feedback about the 

comfort of the PDVibe3 devices covers the comfort of our system for the following reasons. 

First, the PDVibe3 devices are much larger than the UG devices and more likely to be the 

source of discomfort. Second, the UG devices are placed above the PDVibe3s on the leg 

where more tissue is present and thus less likely to cause discomfort than the PDVibe3s. 

Finally, future generations of the FoG-Finder system will see the UG device and PDVibe3 

integrated into one device to be worn on the ankle.

A total of 39 patients completed between 1–9 visits where they wore the PDVibe3s on each 

ankle and received vibration. After each visit, patients were provided with a questionnaire 

which included questions about PDVibe3 device comfort. Figure 11 shows a breakdown of 

the positive, neutral, and negative responses to whether or not the PDVibe3 devices were 

comfortable.

Of the 305 device comfort responses from 39 patients, 93.1% were positive, 4.9% were 

neutral, and 1.9% were negative. Given these responses, we assert that our FoG-Finder 
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system does not cause discomfort for the majority of patients and therefore achieves our 

system requirement of non-intrusiveness.

7 Related Work

7.1 IMU-based Real-time FoG Detection

A viable FoG detection and treatment system can only be said to be real-time if it is 

validated on portable hardware suitable for use in the real-world. Bachlin et al. [4, 5] 

proposed a real-time FoG detection and treatment system based on previous threshold-based 

methods [16, 28] wherein FFT was used to extract the dominant frequencies in the gait 

frequency and FoG frequency bands for the Y-axis acceleration. The ratio of these frequency 

bands and the sum of these bands, called the Freezing Index and Power Index, were used to 

distinguish FoG from normal gait. They used IMUs placed on the left shank, left thigh, 

and lower trunk. They achieved 73.1% sensitivity and 81.6% specificity under LOSO 

conditions using 4s windows, and obtained a treatment latency of under 2s. Their system 

was deployed using auditory cuing as the treatment method of choice. FoG-Finder uses these 

same frequency bands, but instead of using FFT we use BW filters to maintain the temporal 

nature of the data. FFT is a powerful tool, but it removes the temporal nature of the data 

which holds valuable information. Bachlin’s method has difficulty distinguishing normal 

pivot turns from FoG because there is minimal vertical ankle lift with these types of turns.

Mazilu et al. [26] developed a portable FoG detection and treatment system using a 

smartphone and headphones for auditory cuing. Their features for FoG detection were 7 

features (mean, STD, variance, entropy, energy, freezing index, and power index) per IMU 

axis before feature selection, and they used adaboosted C4.5 trees for FoG detection. Their 

evaluation was done in both a subject-dependent and LOSO setting using the DAPHNET 

dataset. For subject-dependent, they reported 98.3% F1 score and 99.8% AUC. However, 

these results are artificially boosted because they performed random selection of windows 

when building their training and testing sets meaning significant data leakage was present. 

The same FoG event could be present in both the training and testing sets, so the their 

models were not tested with unseen data. Under LOSO conditions, their system achieved 

66.2% and 95.3% sensitivity and specificity, respectively. To recap, their system uses 7 time 

domain and frequency domain features which do not maintain the temporal nature of the 

data and instead compress each window down to singular values. Such extreme compression 

must result in the loss of information which is why FoG-Finder uses BW filters to extract 

frequency domain information whilst still maintaining the temporal nature of the data. The 

frequency of gait varies overtime so it is important to capture this fact. The performance of 

Mazilu’s system may improve with the addition of thigh and lower back sensors, but this 

increases the intrusiveness over just two ankle IMUs.

The FoG detection and treatment system by Naghavi et al. [30], DGAD, utilizes two 

ankle mounted IMUs and they validated that their system is real-time using an Android 

smartphone. For treatment, the user has the option of auditory cuing using headphones or 

vibrotactile treatment applied to the wrist using a smart watch. The features they used were 

filtered sensor readings from each IMU with a single 0.5–8Hz BW filter, and utilized a 

5 convolutional layer neural network for FoG detection. They achieved 63.0% and 98.6% 
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sensitivity and specificity, respectively, in a subject-dependent setting using a dataset of 

7 patients. Instead of having a single section containing convolutional layers, FoG-Finder 

uses two separate groups of convolutional layers running in parallel wherein the sections 

are provided with either the normal gait band frequency data or the FoG bad frequency 

data. This separation, along with our additional features to help distinguish pivot turns and 

straight path FoG events, allowed FoG-Finder to better correctly classify normal gait and 

FoG events than DGAD.

7.2 IMU-based Offline FoG Detection

There are many IMU-based offline FoG detection works that are not validated on mobile 

hardware and thus cannot be considered viable at present for real-time, portable FoG 

detection. The majority of these works can be distinguished by the placement of the 

IMU(s) for FoG detection. Ankle worn IMUs [3, 7, 10, 27, 39, 42, 49, 53] can be used 

for FoG detection either alone or with other IMUs placed around the body such as the 

thigh, waist, or arms. Ankle IMUs can be hidden under pants or socks and have the benefit 

of being close to the feet where FoG symptoms appear. The addition of other IMUs may 

be beneficial, but also increases the intrusiveness of the system. Given the effectiveness 

of FoG-Finder, we believe that ankle IMUs are sufficient for FoG detection. Use of deep 

CNN-LSTM models or advanced frequency feature extraction methods such as CWT can be 

used for FoG detection, but our initial exploration of features and models for FoG-Finder 

found the latency incurred by such methods on mobile hardware to be unacceptable. Our 

FoG-Finder system is validated on mobile hardware and shown to be practical for real-world 

deployment.

Waist-worn IMUs [2, 37, 40, 43] can be used for FoG detection, but may be intrusive based 

on placement. IMUs placed on the back of the waist may be uncomfortable when sitting. 

Additionally, since the IMU is placed away from the feet where FoG symptoms are the 

strongest, FoG detection may be less accurate for patients with weak FoG symptoms or 

patients with full body dyskinesia. Wrist [6] and ear-worn IMUs [34] can also be used to 

detect FoG. Wrist IMUs can be combined with vibration therapy to the wrist using smart 

watches and ear IMUs have the benefit of being able to be combined with auditory cuing. 

However, these systems will be more susceptible to other PD symptoms such as tremor or 

dyskinesia. As such, we find the use of ankle IMUs more suitable for our system.

7.3 Non-IMU-based FoG Detection

Motion capture systems [9, 13, 35] have been used for FoG classification, but are not 

practical for real-world deployment since the patient is constrained to a fixed location. These 

systems are better suited for automating the task of labeling clinical FoG data. Computer 

vision [19, 21, 31] based approaches using cameras are also suitable methods for automating 

the FoG labeling process because they lack portability. FoG-Finder is fully portable and 

therefore more suited for real-world application than these methods.

WiFi-based [47] FoG detection has also been proposed, but is not suitable for uncontrolled 

environments due to a lack of portability. However, WiFi does not require line-of-sight to 

the patient and may find practical use in controlled environments such as the patient’s home. 
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Pressure sensors inside the shoe [24, 36, 46] and pressure mats [45] have been shown to be 

suitable methods for FoG detection. The three plantar pressure sensor systems, Pardoel et 

al. [36], Marcante et al. [24], and Shalin [46] are suitable for real-world environments but 

were not evaluated under real-time constraints on portable hardware. Additionally, Pardoel 

et al. and Marcante et al. only had 94.5% and 90% FoG event level accuracy which means 

their systems are not in-situ. Shalin et al. only achieved an F1 score of 31% and does not yet 

have the performance needed to reliably detect FoG. These systems also require the patient 

to either wear specialized shoes or shoe inserts. IMU-based FoG detection allows patients to 

wear their preferred choice of footwear. Pressure mats are not portable, but may serve for 

automatic labeling in clinical environments.

EEG [17, 18], EMG [8], and skin conductance [25] can be used for FoG Detection. These 

systems require skin contact and are more intrusive than IMUs. Also, EEG systems are 

more difficult to disguise making them less practical for real-world applications. However, 

these systems have an advantage over IMU-based FoG detection systems since pure akinesia 

FoG events, FoG events where the patient has no movement, are identical to intentionally 

standing still in the time domain and frequency domain. Patients that only experience 

akinesia FoG may need more intrusive sensor platforms for FoG detection.

8 Conclusion

FoG is a common and dangerous symptom of PD that increases the risk individuals will 

fall and sustain injury. To address this problem, we presented FoG-Finder, a closed-loop, 

portable, and real-time FoG detection and treatment system. To accurately detect FoG, we 

transformed IMU data into the known frequency ranges that dominate healthy gait (0.5–

3Hz) and FoG (3–8Hz) using BW filters. Our FoG-Finder CNN model extracts feature 

representations for these frequency bands separately which provides superior performance 

to past works that combine these frequency bands. Our system was able to achieve 13.4% 

higher F1 score and 10.7% higher overall accuracy compared with other validated real-time 

FoG detection and treatment systems in a LOSO setting. Additionally, FoG-Finder achieved 

an average treatment latency of 427ms and 615ms for subject-dependent and LOSO settings, 

respectively, making it a viable system to treat FoG in the real-world. FoG-Finder was 

validated on our FoG dataset containing 716 freezes from 11 patients. Our dataset will be 

made publicly available at the conclusion of our study.
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CCS Concepts

• Human-centered computing → Ubiquitous and mobile computing systems and tools; 

• Applied computing → Consumer health.
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Figure 1: 
Closed-loop FoG-Finder System
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Figure 2: 
FoG-Finder Data Flow
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Figure 3: 
UG and PDVibe3 Placement on Ankle
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Figure 4: 
Time Domain Feature Combination
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Figure 5: 
FoG-Finder Multi-input CNN Design
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Figure 6: 
Environmental Setup for the Top 5 FoG Triggering Scenarios
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Figure 7: 
Subject-Dependent Window Level Performance

Koltermann et al. Page 28

IEEE Int Conf Connect Health Appl Syst Eng Technol. Author manuscript; available in PMC 2023 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8: 
Subject-Dependent Performance Evaluation
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Figure 9: 
Leave-One-Subject-Out Window Level Performance
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Figure 10: 
Leave-One-Subject-Out Performance Comparison
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Figure 11: 
Patient Responses Concerning Device Comfort
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