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AG-NAS: An Attention GRU-based Neural
Architecture Search for Finger-Vein Recognition

Huafeng Qin, Chao Fan, Shaojiang Deng, Yantao Li, Mounim A. El-Yacoubi, and Gang Zhou, Fellow, IEEE

Abstract—Finger-vein recognition has attracted extensive at-
tention due to its exceptional level of security and privacy.
Recently, deep neural networks (DNNs), such as convolutional
neural networks (CNNs) showing robust capacity for feature
representation, have been proposed for vein recognition. The
architectures of these DNNs, however, have primarily been
manually designed based on human prior knowledge, which
is both time-consuming and error-prone. To overcome these
problems, we propose AG-NAS, an Attention Gated recurrent
unit-based Neural Architecture Search to automatically search
for the optimal network architecture, thereby improving the
recognition performance for different finger-vein recognition
tasks. First, we combine the self-attention mechanism and gated
recurrent unit (GRU) to propose an attention GRU module
employed as a controller to generate the architectural hyper-
parameters of candidate neural networks automatically. Second,
we investigate a parameter-sharing supernet policy to reduce the
search space, computation, and time costs. Finally, we conduct
rigorous experiments on our finger-vein database and two public
finger-vein databases. The experimental results demonstrate that
the proposed AG-NAS outperforms the representative approaches
and achieves state-of-the-art recognition accuracy.

Index Terms—Finger-vein recognition, Deep learning, Neural
architecture search (NAS), Gated recurrent unit (GRU), Self-
attention

I. INTRODUCTION

As a result of the dramatic deployment of the Internet, IoT,
and wearable devices, along with the ever-increasing personal
data by these technologies, information security has become
the focus of unprecedented research efforts in the past decade.
Traditional identification methods, such as magnetic cards,
keys, passwords, or personal identification numbers (PINs),
are vulnerable to stealing, copying, and forging, as well as
to various attack methods, such as smudge attacks [1] and
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shoulder-surfing attacks [2]. To address these shortcomings,
biometrics has been widely investigated due to the follow-
ing advantages: 1) Convenience: As an individual’s inherent
modality, biometric traits can be automatically verified in less
than one second, and they are difficult to forget or cannot be
lost. 2) Security: Biometric traits are resistant to duplication
and forgery. Therefore, biometric traits, such as faces and fin-
gerprints, have been investigated for identification/verification
in recent years, as they are potential candidates to replace
traditional identification methods. Biometric traits include
physiological traits and behavioral traits. Physiological traits
are more readily collectible and have been widely used in
practical scenarios, such as door access and mobile payments,
while behavioral traits require highly configured devices to
capture motion patterns.

Physiological biometrics can be divided into two categories:
1) Extrinsic traits, such as face [3] and fingerprint [4], and
2) Intrinsic traits, such as palm vein [5], hand vein [6], and
finger vein [7–9]. Extrinsic traits have been applied in different
scenarios, such as immigration clearance, financial payments,
access control systems, and consumer electronic products.
However, they are vulnerable to attacks and may be copied
without users’ permission [10, 11], which raises concerns
about security and privacy. Intrinsic traits, by contrast, are
concealed in our bodies and have two advantages [6, 12]:
1) Liveness detection: Vein patterns can only be collected
from living individuals; 2) High security and privacy: Blood
vessels are naturally concealed beneath the human skin from
birth, remaining invisible to the naked eye by visible light.
It is hard to replicate vein patterns without users’ awareness.
Moreover, it is difficult to forge vein patterns to attack vein
recognition systems. Finger-vein biometrics has received, as
a result, increasing attention in recent years. Like facial and
fingerprint recognition systems, most vein recognition systems
share the same mechanism: physiological data collection,
feature extraction, and feature matching for recognition.

Finger-vein recognition remains a challenging task as image
acquisition is affected by various factors, such as lighting [13],
temperature [14], light scattering [15], and user behavior [14].
These factors cause noise and irregular shadow regions in the
captured images, ultimately degrading recognition accuracy.
To solve this problem, researchers have proposed various
algorithms based on traditional machine learning and other
technologies to improve the robustness. Deep learning tech-
nologies, including convolutional neural networks (CNNs),
have recently demonstrated remarkable performance across
diverse tasks, such as image classification and object detection
[16–20]. Inspired by this success, deep learning has been
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introduced to the field of vein recognition [5, 5, 7, 8, 21–
24, 24–31], as indicated by the growing trend in recent years.
Current deep neural network (DNN) architectures for vein
recognition, nonetheless, have mainly been devised manu-
ally by human experts, which raises the following issues:
1) Limited exploration of the design space: Human experts
may not be able to explore the entire design space of DNN
architectures due to their limited knowledge and experience,
especially for complex neural architectures. In addition, they
may have biases towards specific architectures they have
worked or were familiar with, which may limit the diversity
of the architecture exploration; 2) High time consumption
and cost: Manually developing CNN architectures is a time-
consuming and costly process, requiring significant expertise
and resources; 3) Difficulty in optimizing hyperparameters:
Optimizing hyperparameters for CNN architectures can be a
challenging task, and human experts may not always be able
to find the optimal hyperparameters; 4) Lack of scalability:
Manually designed architectures may not be scalable to other
datasets or more complex tasks, limiting their usefulness in
real-world applications. To overcome these shortcomings, neu-
ral architecture search (NAS) technology [32–34], aiming to
automatically find the optimal neural network architecture for
a given task, has received more and more attention. Compared
to traditional approaches for designing neural networks, NAS
automates this process using machine learning algorithms
to explore the space of possible architectures and find the
best-performing ones. NAS demonstrates clear potential in
enhancing the performance of DNNs and streamlining the
design process, thereby reducing the time and effort involved
[35]. NAS has been employed in various fields, including
image classification [36], natural language processing [37],
and speech recognition [38].

To enhance recognition performance, we propose AG-NAS,
an Attention Gated recurrent unit-based Neural Architecture
Search to automatically generate the optimal network architec-
ture for a given finger-vein classification task, as an extension
of our preliminary work [39]. The proposed AG-NAS com-
prises two crucial modules: a controller and a supernet. The
controller is responsible for generating the architectural hy-
perparameters. The supernet houses large candidate networks
that share parameters to reduce the search space, computation,
and time costs, thereby improving search efficiency.

The main contributions of our work can be summarized as
follows:

1) We propose AG-NAS, an attention gated recurrent unit-
based neural architecture search for finger-vein recognition.
Specifically, we design an attention gated recurrent unit by in-
troducing the attention mechanism into the recurrent network,
thereby making it capable of learning long-range dependencies
within sequences and enabling AG-NAS to find an optimal
network architecture automatically for finger-vein recognition.

2) We design a parameter-sharing supernet to improve
the search efficiency. Specifically, the controller outputs the
architectural descriptor, based on which the candidate subnets
are determined from the supernet. Since the parameters are
shared among these subnets, AG-NAS can achieve robust
empirical performance using a few GPU hours.

3) We conduct rigorous experiments on our finger-vein
database and two public finger-vein databases to evaluate
the search efficiency and the performance of AG-NAS. The
experimental results demonstrate that the deep neural net-
work generated by AG-NAS outperforms the representative
(deep learning-based and NAS-based) finger-vein recognition
approaches in terms of EER and accuracy.

The remainder of this paper is organized as follows. In
Section II, we introduce the related work on finger-vein
classification. In Section III, we detail the proposed AG-NAS
and evaluate the performance of AG-NAS in Section IV.
Finally, Section V concludes this work.

II. RELATED WORK

Finger-vein recognition algorithms are designed to verify
or identify individuals by analyzing their captured finger-
vein patterns. Due to the unique and stable vein texture
information in finger-vein images, finger-vein recognition of-
fers high accuracy, security, and robustness. As a result, it
has found widespread applications in real-world scenarios,
including financial payments, border inspections, and access
control systems. To enhance the accuracy of finger-vein recog-
nition, various methods have been introduced to extract robust
features. These can be categorized into traditional vein recog-
nition methods, deep learning-based vein recognition methods,
and neural architecture search.

A. Traditional Vein Recognition Methods

Traditional vein recognition approaches rely on handcrafted
and shallow learning methods to extract vein patterns. The
handcrafted methods use manually designed descriptors to
extract vein patterns, including curvature-based approaches
[40–45], Gabor filter-based approaches [14, 15, 46], and
local binary descriptor-based approaches [47, 48]. The shal-
low learning methods exploit traditional machine learning
techniques to model the input. Representative approaches,
such as k-means clustering [49], SVM [50], PCA [51], 2D-
PCA [52], and Sparse Representation (SR) [53], have been
proposed to learn vein feature representation. To improve
performance, LRR (Low-Rank Representation) [54] is used
for discriminative feature extraction by adding a regularization
term to constrain low-rank coefficients, thereby enhancing the
discriminative power.

B. Deep Learning-based Vein Recognition Methods

Deep learning-based methods refer to machine learning
technologies employing neural networks with many layers, fa-
cilitating a hierarchical, non-linear mapping of input data that
directly operates on raw data. Recent deep learning models,
such as CNNs and Transformers, have shown robust feature
representation capability and have proven their effectiveness
in diverse computer vision tasks [18–20]. Inspired by this
success, some researchers have applied deep learning in vein
image quality assessment [55–57], vein texture segmentation
[7, 21–23], and vein recognition [5, 5, 8, 24, 24–31]. For
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example, FV-CNN [24] is a specially designed CNN for finger-
vein recognition. PV-CNN [5] uses MSMD-GAN to gener-
ate augmented data for single-sample palm-vein recognition.
To improve computation efficacy, LightweightDeepCNN [28]
proposes a lightweight vein recognition algorithm relying on
a triplet loss function to train the model. To extract robust fea-
tures, Arcvein [30] proposes a loss function called the cosine
center loss to learn both inter-class and intra-class information
to improve the discriminating ability of CNNs for finger-
vein verification. FVRASNet [29] proposes a lightweight CNN
model that integrates recognition and anti-spoofing tasks into
a unified CNN model through multi-task learning methods.
Recently, transformer-based approaches have been investigated
to learn long-range dependency features for vein recognition.
Typical works [25, 26, 31] have shown promising performance
for vein recognition.

C. Neural Architecture Search

Recently, neural architecture search [32] has been pro-
posed to automatically search for an optimal neural network
architecture using reinforcement learning techniques. NAS
has found widespread applications in various fields, such as
computer vision [58], natural language processing [59], and
speech recognition [60]. As the neural network architecture
is determined by automatic search policy instead of prior
knowledge, it can significantly improve classification perfor-
mance and efficiency. For example, reinforcement learning
is employed to automatically find CNN architectures for a
given learning task in [61]. To reduce the computation cost
on large datasets, Zoph et al. [62] propose to search for
an architectural building block on a small dataset and then
transfer the block to a larger dataset, designing a new search
space to enable transferability. For the same purpose, Pham et
al. [58] propose an efficient neural architecture search (ENAS)
for automatic model design, and Cai et al. [34] introduce
ProxylessNAS to learn the architectures for large-scale target
tasks and target hardware platforms directly. Liu et al. [33]
propose the DARTS method to search for the architecture in a
differentiable manner instead of searching it in a discrete set of
candidate architectures, which is required to choose only one
path during the verification phase, inevitably leading to a gap
between neural architectures during the search and verification
phases. To address this issue, Chang et al. [63] investigate the
differentiable architecture approximation (DATA) based on an
ensemble Gumbel-softmax (EGS) estimator to automatically
approximate architectures during searching and validating in
a differentiable manner. Jiang et al. [64] improve the differ-
entiable architecture search by removing the softmax-local
constraint for named entity recognition (NER). In addition,
Li et al. [65] modularize the large search space of NAS
into blocks to ensure that the potential candidate architectures
are effectively trained, which reduces the representation shift
caused by the shared parameters and leads to the correct
rating of the candidates. To overcome the catastrophic for-
getting in one-shot NAS, Zhang et al. [66] formulate the
supernet training as a constrained optimization problem of
continual learning and propose a search-based architecture

selection (NSAS) loss function for a greedy search of the most
representative subset. Lu et al. [67] propose a differentiable
NAS to decrease the uncertainty of differentiable architecture
search. To reduce time cost, Mellor et al. [68] examine the
overlap of activation between data points in an untrained
network and compute a score based on a predefined kernel
matrix, which is subsequently incorporated into a simple
algorithm to search for robust networks, all without the need
for training. Inspired by recent NAS approaches, Kim et al.
[69] introduce a novel NAS approach to search for an optimal
architecture for spiking neural networks (SNNs). Jia et al. [36]
survey the NAS technology and explore NAS-based 2D and
3D palmprint and palm-vein recognition, where they assess
the recognition performance of twenty representative NAS
methods on palmprint and vein databases in their experiments.

Handcrafted techniques are rule-based or expert-based ap-
proaches designed based on prior knowledge and heuristics for
specific tasks. Their performance, therefore, is very limited.
Shallow learning approaches, such as SVM and PCA, can
be regarded as shallow neural networks with one or two
layers, and they usually fail, as a result, to extract high-
level features. Deep learning approaches, by contrast, stack
multiple layers to form a DNN, which allows the extraction
of rich non-linear hierarchical representations when trained
on large datasets. Manually designed deep networks, how-
ever, are time-consuming, expensive, and not generalizable
to different tasks. NAS is an effective solution that has been
widely investigated in recent years and recently brought into
the vein recognition task. Some of the proposed NAS-based
approaches, nonetheless, employ traditional approaches, such
as the recurrent neural network, as a controller for architecture
searching. Hence, the controller’s representation capacity is
limited, degrading the search performance and inducing high
time costs.

III. METHOD

In this section, we first introduce our AG-NAS. Then, we
describe how to generate a deep neural network architecture
by AG-NAS. Next, we detail the subnet generation, controller
design, supernet design, and reinforcement learning, respec-
tively. Finally, we discuss the training and testing of AG-NAS
to ensure a comprehensive understanding of the algorithm.

A. AG-NAS

Deep neural networks (DNNs) are capable of automatically
learning effective features from a large number of data.
However, the application of DNNs to finger-vein recognition
encounters several challenges, particularly in designing an
appropriate network architecture for a given vein recognition
task. In this work, we propose an attention GRU-based neural
architecture search to automatically explore and optimize the
neural network architectural hyperparameters in the context of
vein recognition.

We illustrate the framework of the proposed AG-NAS in
Fig. 1. As illustrated, the supernet consists of N block layers,
with each providing M candidate operators (nodes). AG-NAS
utilizes a controller to generate architecture descriptors, which
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Fig. 1: Framework of AG-NAS.

activate specific nodes in the supernet to form subnets. These
subnets undergo training on the training set, and the accuracy
on the validation set serves as the reward signal for optimizing
the controller’s parameters. Throughout the training process,
the controller and subnets are iteratively trained, leading to the
determination of the optimal network architecture. Specifically,
for the subnet training, the controller takes a set of random
vectors as the input, and produces the probability ps. A set
of architecture descriptors As are then sampled based on
the probability ps. The supernet utilizes these architecture
descriptors As to select one of the subnets as the active
network, which is subsequently trained on the finger-vein
training set to update its parameters. This process allows us
to train S subnets for S input vectors. For the controller
training, its output is regarded as the probability pe, and a set
of architecture descriptors Ae are sampled with the probability
pe. The active network is determined from the supernet using
the architectural descriptor Ae. The accuracy of the active
network on the validation set serves as the reward R, and
this reward is used to compute the gradient of pe optimizing
the controller’s parameters. To achieve stable training, E
networks are generated based on E architectural descriptors
from the controller, and their average accuracy is employed
as a reward for controller training. After the iterative training,
the controller outputs the architectural descriptor A′ with the
highest probability for each layer. An optimal subnet is then
extracted from the supernet using the resulting architectural
descriptor A′ for finger-vein recognition.

B. Subnet Generation

In our approach, the selection of an activated subnet from
a supernet is treated as choosing a path from the root node
to a leaf node on a complete N-ary tree. Each node on this
path corresponds to a specific architecture of one layer. The
AG-NAS controller produces an architectural descriptor that
outlines the selection process for its child nodes, designating
the active node on the path. To activate nodes for subnet
generation, each architectural descriptor must make three key
decisions:

1) Determine whether to select the direct path, utilizing the
output of the previous layer instead of the current layer
as the input for the next layer;

2) If not choosing the direct path, decide the type and
parameters of the network architecture in the current
layer;

3) If not choosing the direct path, decide whether to use a
shortcut path.

The three decisions are crucial for the performance of
subnets. First, the direct path allows AG-NAS to automatically
determine whether to reduce the number of layers. Second, the
selection of the network architecture type and hyperparameters
can significantly influence subnet performance. In our work,
these encompass the type, number, and size of convolution
kernels. Finally, like residual connection, the inclusion of a
shortcut path enhances the information propagation within the
subnet, alleviating issues of information loss and vanishing
gradient to improve overall performance. Therefore, during the
generation of architecture descriptors, the AG-NAS controller
must carefully consider the interaction and balance among
these three decisions. In our work, the architecture descrip-
tor is defined as a triplet [direct, param, shortcut], where
direct indicates the direct connection, param represents the
network hyperparameters, and shortcut denotes the shortcut
connection.

Fig. 2 depicts an example of subnet generation from the
supernet using the controller. In this DNN, there are N
hidden layers, each containing two alternative convolutional
blocks: a conventional convolutional block and a separable
convolutional block [70]. The N random vectors x1, x2, ..., xN

are individually fed to the controller, producing corresponding
outputs h1, h2, ..., hN that form an architecture descriptor.
This descriptor, represented by the red connection lines in
Fig. 2, determines the subnet. The architecture selection of
each hidden layer is illustrated as follows:

1) At time t1, the controller receives a seed vector x1 and
initial state vector h0 as input, and generates the state
vector h1. This vector is then transformed into a prob-
ability triplet a1 = [a11, a12, a13] through a non-linear
fully connected layer. Using this probability triplet, the
controller produces a triplet d1 = [direct1, param1,
shortcut1] for the first layer by randomly sampling
based on the resulting probability triplet. Specifically,
direct1 = 0 or 1 indicate that the direct path is not
selected or selected. param1 = c (c = 1, ..., C) or
param1 = [0, 0, ..., 1, ..., 0, 0] ∈ R1×C (where only
the cth value in the one-hot vector param1 is not
equal to 1) indicates the selection of the cth type of
network architecture, where C is the number of net-
work architecture types (C = 6 in our experiments).
shortcut1 = 1 or 0 indicate that a shortcut path is used
or not used. Therefore, the triplet [0, 2, 1] implies that
the second operator type and shortcut path for this layer
are activated in the first layer as the data propagation
passageway.

2) At time tN , the controller takes the seed vector xN and
state vector hN−1 from the previous layer as inputs,
and generates the state vector hN . Similarly, using the
probability triplet aN = [aN1

, aN2
, aN3

], the con-
troller outputs the triplet dN = [directN , paramN ,



5

t1

Input out1

controllerh0

x1

h1

direct1=0

shortcut1=1

param1=1

direct path

Operator type C

shortcut path

Out

controller

xN

hN

tN

directN=1

param1=0

shortcutN=none

paramN=none

super-blockN

direct path

Operator type 1

Operator type C

shortcut path

super-block1

... outN-1

... controller

xN-1

hN-1

tN-1

Operator type 2

...

param1=0
Operator type 1

Operator type 2

...

paramN=none

paramN=none

Fig. 2: Example of subnet generation from the supernet. The red line connection nodes denote the activated ones, emphasizing
the generated subnet. The controller takes a sequence x1, x2, ..., xN and h0 as its input, and forwards the corresponding output
sequence h1, h2, ..., hN to the supernet. The network architecture type and hyperparameters for each layer are then determined
for the purpose of classification.

shortcutN ] for the N th layer. As shown in Fig. 2, in
the final layer, directN = 1 indicates the selection of
the direct path. As a result, the output of the (N − 1)th
layer is directly used as the output of the N th layer, and
two parameters paramN and shortcutN are not used or
none. Thus, in the N th layer, the direct path is activated
as the pathway for data propagation.

Following N iterations, the controller produces N triplet
sets d1, d2, ..., dN , forming an architectural descriptor A. This
descriptor is employed to activate nodes within the supernet,
yielding a subnet (as depicted by the red connection lines in
Fig. 2). The search method, orchestrated by the collaboration
between the controller and supernet, exhibits the flexibility to
generate diverse neural network architectures, automatically
optimized for distinct vein recognition tasks.

C. Controller

In NAS, the controller plays a crucial role in generating
candidate network architectures and updating parameters based
on the feedback reward signals. Typically, a recurrent neural
network (RNN), such as LSTM, is employed for sequence data
representation learning. Due to its fewer parameters and faster
computation speed, GRU has gained widespread application
in various practical contexts. GRU encompasses two critical
gates: the update gate and the reset gate. The update gate
controls how much information from the previous hidden
state is retained in the current time step, while the reset
gate determines how much information from the previous
hidden state is used to compute the candidate’s hidden state
at the current time step. The GRU gate mechanism effectively
addresses issues of gradient vanishing and exploding, enabling
the network to adeptly process long sequence data. Recently,
transformers have demonstrated significant success in natural

language processing and computer vision. Thanks to their self-
attention mechanism, transformers excel in capturing long-
range dependencies between different positions in an input
sequence. Inspired by its robust feature representation, we
integrate the attention mechanism into GRU, proposing an
attention GRU as the controller for our neural network ar-
chitecture search.

Architecture: In our approach, the controller comprises
two stacked attention GRUs and a classifier group, capable
of transforming the hidden state into a probability triplet.
The resulting triplet contains three elements: direct, param,
and shortcut, representing the operators of the direct path,
network architecture type and parameters, and shortcut path,
respectively. Due to the distinct dimensions of these three
elements, the classifier group employs varied processing oper-
ators. For direct and shortcut, the fully connected layers and
sigmoid activation function are used for feature extraction, and
the classifier group uses the fully connected layers and softmax
layer for param.

Attention GRU: As shown in Fig. 3, the attention GRU
is introduced by substituting the operations in GRU with self-
attention and cross-attention to achieve update and reset gates.
Specifically, considering xt as the input vector and ht−1 as the
previous hidden state, we calculate the query matrix Qx, key
matrix Kx, and value matrix Vx for xt. Similarly, we obtain
the query matrix Qh, key matrix Kh, and value matrix Vh for
ht−1. The self-attention of input vector xt can be computed
by Eq. (1):

SAx = Attention(Qx,Kx, Vx)

= Softmax(
QxK

T
x√

dx
+Bx)Vx.

(1)

Similarly, we compute the self-attention of the hidden state
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Fig. 3: Architecture of the attention GRU.

ht−1 and the cross-attention between xt and ht−1 by Eqs.
(2)-(4):

CAx = Attention(Qx,Kh, Vh), (2)

SAh = Attention(Qh,Kh, Vh), (3)

CAh = Attention(Qh,Kx, Vx), (4)

where CAx and CAh represent the cross-attention between xt

and ht−1, and SAh indicates the self-attention of the hidden
state xt. The update gate zt is determined based on SAx and
CAx in Eq. (5):

zt = σ(Linear(Concat(SAx, CAx))). (5)

Similarly, the reset gate rt is computed based on SAh and
CAh in Eq. (6):

rt = σ(Linear(Concat(SAh, CAh))), (6)

where σ represents the sigmoid function, Linear indicates
a linear mapping function, and Concat denotes a vector
concatenation function. Using zt and rt, we compute the
candidate hidden state h by Eq. (7):

h = tanh(Linear(x) + Linear(rt ⊙ ht−1)), (7)

where ⊙ denotes the element-wise multiplication operation.
The final hidden sate ht is calculated by Eq. (8):

ht = (1− z)⊙ ht−1 + z ⊙ h. (8)

In AG-NAS, the controller takes a seed vector xt and the
previous hidden state ht−1 as inputs at time t, generating a
new hidden state ht. Then, the classifier group transforms ht

into a probability triplet for the network architecture of the tth
layer. This process is iteratively repeated by taking ht as the
input to AG-NAS at time step (t+ 1).

D. Supernet

Traditional NAS methods typically involve a controller
generating architecture descriptors, followed by the creation
and training of a new DNN. The accuracy of the validation
set is then utilized as a reward to train the controller. These
approaches, however, come with high time consumption and

Input 

Layer
Classifier

branch1

branch2

branchM

.

.

.

branch1

branch2

branchM

.

.

.

super-block layer 1 super-block layer N

…

Fig. 4: Architecture of the supernet.

TABLE I: Optimal architecture of super-block layer

Architecture Kernel size
conv-relu-norm (3, 3)
conv-relu-norm (5, 5)

separable conv-relu-norm (3, 3)
separable conv-relu-norm (5, 5)

average pool (2, 2)
max pool (2, 2)
shortcut -

direct path -

require substantial hardware resources for each search. As a re-
sult, the application of traditional NAS methods to large-scale
network search tasks becomes challenging. To solve this issue,
we design a supernet for optimal subnet search, wherein the
controller generates the descriptors to determine the subnet’s
architecture. The nodes of the supernet are activated layer by
layer based on these descriptors, resulting in the generation of
a subnet. This approach employed by AG-NAS eliminates the
need to create and train a new subnet for each search, thereby
reducing time costs.

We illustrate the supernet architecture in Fig. 4. As shown,
the supernet architecture comprises three modules. The first
module consists of an input layer with a 3 × 3 convolutional
layer and a batch normalization layer, mapping the input
sequence to a 32-channel high-dimensional space. The second
module comprises N (N = 10) super-block hidden layers,
each containing M nodes or selectable network architectures,
where M = C +2 and C is the number of operator types (as
shown in Fig. 2). During the training process, AG-NAS acti-
vates only one of the nodes as the active node for the current
layer. In our experiments, M is set to 8 (2 convs, 2 separable
conv, 1 average, 1 max pooling, 1 shortcut, and 1 direct patch),
indicating that there are 8 selectable network architectures for
each hidden layer (as detailed in Table I). Note that we select
only one of the first 6 operator types (2 convs, 2 separable
conv, 1 average, and 1 max pooling) for each hidden layer, and
the remaining nodes are not activated when the direct patch is
activated. This way, for each layer, there are only 13 possible
combinations of the operator type, shortcut, and direct patch.
Hence, approximately 1310 subnets are included in our search
space. Finally, the third module consists of a classification
layer that outputs the probability of the input belonging to
all classes. As the first module of the entire network, the
input layer aims to extract coarse features and reduce the input
dimension. The super-block layers constitute the key modules
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of the supernet. Each node in the super-block layer represents
a candidate network architecture, and the architecture of the
network in each layer is determined by activating these nodes.
The classifier layer takes the features extracted by the super-
block layer as input and predicts its probability of belonging
to all classes, achieving the final classification task. Overall,
AG-NAS employs the designed supernet to automatically
determine an optimal network architecture for a specific task
through node activation. This approach provides flexibility and
adaptability for different finger-vein recognition tasks.

E. Reinforcement Learning

In our work, we utilize the cross-entropy function to cal-
culate the loss and optimize the parameters of the supernet ω
for generating the subnet weights. Specifically, the supernet
activates the subnet to execute the finger-vein recognition task
based on a given architectural descriptor. Subsequently, we
optimize the parameters of the subnet ω by computing the loss
gradient through forward and backward propagation on the
target task. The controller produces a sequence representing a
candidate network architecture (a1, a2, ..., aN ). This candidate
architecture undergoes training on the training set, and the
resulting accuracy on the validation set serves as a reward
signal R. This reward is used to update the controller’s param-
eters, which in turn generate the architectural hyperparameters
of neural networks. Concretely, in the search for an optimal
architecture, the controller maximizes the expected reward
J(θt) as computed by Eq. (9):

J(θt) = EP (a1:aN ;θt)[R] =
∑

a1:N∈S

Pθt(a1:N ) ·R. (9)

However, there is no function relationship between reward
R and controller parameters θ, implying that the gradient
cannot be propagated through the chain rule. To address this
issue, the REINFORCE algorithm [71], as a policy gradient
algorithm, can be used to maximize the expected reward of the
controller. Specifically, the formula for updating the controller
using the REINFORCE algorithm is given by Eq. (10):

∇J(θt) =
∑

a1:N∈S

∇Pθl(a1:N ) ·R

=
∑

a1:N∈S

Pθt(a1:N )
∇Pθt(a1:N )

Pθt(a1:N )
·R

=
∑

a1:N∈S

Pθt(a1:N )∇θt logPθt(a1:N ) ·R

= E[∇θt logPθt(a1:N ) ·R].

(10)

It is an unbiased estimate for our gradient, and its empirical
approximation is expressed by Eq. (11):

Lθt ≈ −logPθt(a1:N ) ·R = −
N∑

n=1

logPθt(an) ·R. (11)

The optimizing function given in Eq. (9) is equivalent to
optimizing the following problem, as shown in Eq. (12):

θl
∗ = argminELθt = argminθt logPθt(a1:N ) ·R. (12)

This problem is solved using the Adam optimizer with a
learning rate α and batch size B. The training procedure for
each batch is given by Eq. (13):

θt+1 = θt − α
1

M

B∑
m=1

∇θtLθt . (13)

By combining Eq. (12) and Eq. (13), we can obtain Eq.
(14):

θt+1 = θt + α
1

M

B∑
m=1

N∑
n=1

∇θt logPθt(an) ·Rm. (14)

To reduce the variance during the training process, the
parameter b is introduced into Eq. (14) to yield Eq. (15):

θt+1 = θt + α
1

B

B∑
m=1

N∑
n=1

∇θt logPθt(an) · (Rm − b), (15)

where N denotes the number of layers in the generated
network architecture, and b is the moving average of the
reward rm over a certain period of time. The term Pθt(an)
represents the conditional probability of the controller select-
ing network architecture an at the nth layer, given the previous
architectures a(n−1):1. The parameter B controls the training
frequency of the controller, indicating that the gradient is accu-
mulated over a span of B runs, and the controller’s parameters
are updated by averaging the accumulated gradients.

Based on reinforcement learning, we propose a dynamic
ε − greedy strategy for controller training. The ε − greedy
strategy is a widely adopted and effective approach in rein-
forcement learning. It randomly generates an action descriptor
with probability ε while selecting an action from its probability
vector with probability 1 − ε. Typically, the value of ε is
set to a small value, such as 0.1 or 0.2, ensuring that the
controller mostly chooses actions based on its learned policy
but still has a chance to explore other actions. This balance
between exploration and exploitation of historical experience
allows the controller to take new actions while continuously
utilizing its learned knowledge. When ε equals 0, the controller
selects actions based solely on its learned policy. Conversely,
when ε equals 1, the controller randomly selects actions
without considering its learned policy. Existing works [32, 72]
often use a fixed value of ε for training, which may not be
effective at different stages of the learning process, resulting
in either excessive exploration or exploitation. To address this
issue, we propose a dynamic ε − greedy strategy to train
the controller, where ε = 1 − Maccuracy and Maccuracy
is the moving average of the accuracy for the generated
network at different times. Specifically, if the performance
of the generated network is poor, the controller’s policy is
unstable and requires more exploration, thus increasing ε. In
contrast, if the performance is good, indicating a relatively
stable controller’s policy that can exploit more knowledge,
ε decreases. The dynamic ε − greedy strategy automatically
adapts ε to balance exploration and exploitation at different
stages during the learning process.
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F. Model Training and Testing

AG-NAS consists of two main blocks: the controller and the
supernet, which are iteratively trained to search for an optimal
network architecture. The controller’s parameters are denoted
as θ, and the supernet’s parameters are denoted ω, with shared
weights among subnets. The training process of AG-NAS can
be divided into three stages: warm-up stage, main training
stage, and generation stage. In the warm-up stage, the supernet
is trained to provide improved initial values for the optimal
network search. In the main training stage, the optimal subnet
is searched through iterative training of the controller and the
subnet. In the generation stage, an optimal neural network is
obtained for vein classification. The detailed training process
is as follows:

1) Warm-up stage: We keep the parameters of the controller
θ fixed and proceed to train the supernet ω. Throughout
this training process, the controller with parameters θ
generates a set of random network architectural descrip-
tors. These descriptors are used to determine various
subnets from the supernet, and the resulting subnets are
subsequently trained using the training dataset.

2) Main training stage: Both the parameters of the con-
troller θ and the supernet ω are iteratively updated.

• To update the parameters of the supernet ω, we
maintain the parameters of the controller θ fixed.
In each training step, the controller generates a set
of architecture descriptors, from which a subnet is
determined within the supernet. The parameters of
the supernet ω are then updated by training the
subnet on the training dataset. Note that if the
parameters of the nodes have been trained in the
warm-up stage, they will be fine-tuned during this
stage.

• To update the parameters of the controller θ,
we keep the parameters of the supernet ω fixed.
Throughout the training process, the controller gen-
erates a set of architecture descriptors to construct
a subnet from the supernet. The accuracy of the
resulting subnet on the validation set is employed
as the reward R. After repeating E(E = 10) steps,
E subnets are obtained. The average accuracy of E
subnets is computed to update the parameters of the
controller θ.

3) Generation stage: Following the training, the controller
produces the architecture descriptor, from which an
optimal subnet is generated within the supernet. This
subnet is utilized as the classifier and further trained on
the training set for finger-vein recognition. Finally, the
trained classifier is employed for testing.

The optimization process of the proposed AG-NAS is sum-
marized in Algorithm 1.

IV. PERFORMANCE EVALUATION

To evaluate the performance of AG-NAS, we conducted rig-
orous experiments on our database and two public finger-vein
databases, using the PyTorch deep learning framework. The
experiments were executed on a high-performance computer

Algorithm 1 Optimizing the proposed AG-NAS.

Input: Initial parameter of controller θ; Parameter of supernet
ω; Training set Xt and label Lt; Validation set Xv and
label Lv;

Output: Target network;
1: For 1 ≤ e ≤ warm epoch;
2: Generate architecture descriptors by the controller;
3: Active a subnet from the supernet using architecture

descriptors;
4: Train the resulting subnet using the training dataset and

update the parameters of supernet ω;
5: end
6: For 1 ≤ t ≤ epoch;
7: For 1 ≤ t1 ≤ 10;
8: Generate architecture descriptors by the controller;
9: Active a subnet of the supernet using architecture

descriptors;
10: Train the resulting subnet using the training dataset and

update the parameters of supernet ω;
11: end
12: For 1 ≤ t1 ≤ 500;
13: Generate architecture descriptors by the controller;
14: Active a subnet from the supernet using architecture

descriptors;
15: Compute the accuracy of a subnet on validation set as

the reward R;
16: if t1 Mod E = 0
17: Update parameters of the controller according to Eq.

(15) based on the average accuracy of E subnets;
18: end
19: end
20: end
21: Select an optimal subnet from the supernet as the target

network based on the architecture descriptor.

equipped with an Intel-10900X 3.7 GHz processor featuring
10 cores and 20 threads, 128GB memory, and an NVIDIA
3090 graphics card. In the experiments, AG-NAS is compared
with classical neural network models, namely ResNet [19],
VGGNet [20], and GoogLeNet [18], as well as the state-
of-the-art vein classifiers, namely FV-CNN [24], PV-CNN
[5], LightweightDeepCNN [28], Arcvein [30], and FVRASNet
[29]. Note that we fine-tune the publicly provided pre-trained
ResNet, VGG, and GoogLeNet models. In addition, NAS-
based models, including ENAS [58], ProxylessNAS [34], and
DU-DARTS [33], are considered in our comparative experi-
ments.

A. Database

1) Database A: Currently, most existing works are tested
based on finger-vein images collected through device proto-
types rather than commercial sensors, making it challenging
to fully evaluate the effectiveness of finger-vein recognition
methods in practical applications. Moreover, the absence of
public finger-vein databases collected by commercial sensors
limits the development of real-world recognition systems. To
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Fig. 5: Image capturing system

(a)  

Image Sensor

(CCD )Camera

Vein

Near-infrared 

Light(LDE)

(b)

Fig. 6: Vein image capturing device. (a) Finger-vein image
capturing device; (b) Principle of image capturing

address this issue, we collaborated with Corespirit company
[73] to develop a low-cost finger-vein capturing system, in-
cluding both hardware and software components, as shown
in Fig. 5. The hardware device comprises a light controlling
unit (LCU) and an image collection unit (ICU). The LCU,
equipped with a micro-controller unit (Advanced RISC Ma-
chine (ARM)), controls the light intensity of near-infrared
LEDs, while the ICU consists of a near-infrared LED group,
CCD camera, and NIR filter. The software comprises a light-
controlling system, finger detection system, and recognition
system. The light-controlling system adjusts brightness to cap-
ture high-quality vein images, the finger detection system iden-
tifies recognition request, and the recognition system handles
image preprocessing, feature extraction, and identification. Our
commercial finger-vein imaging sensor (Fig. 6(a)) features a
USB for communication with the host computer, enabling
data query, deletion, modification, registration operators, and
access to the recognition results. The scanner connects to a
PC or laptop via a USB interface for image access, with
installed software (Fig. 5). During image collection, a finger
is positioned between the NIR camera (lower side) and NIR
illumination unit (upper side); the infrared light from the NIR
illumination unit passes through the finger, and the camera
records vein patterns, as shown in Fig. 6(b). In our experi-
ments, we have constructed a finger-vein database [74] using
commercial sensors, comprising 6,000 images (10 images ×
6 fingers × 100 subjects) from 100 subjects (66 males and 34
females). Each subject provided six fingers, namely the index,
middle, and ring fingers of both hands, each contributing 10
images. As the background holds no classification information,
we cropped the images to extract the region of interest (ROI),
and the resulting ROI images were further normalized to
55× 127.

2) Database B: The Hong Kong Polytechnic University
finger-vein image database (HKPU dataset) [14] is gathered
from 156 participants using a non-contact imaging device.

(a) (b)

Fig. 7: Sample results from database A. (a) Original image;
(b) Normalized gray image from (a).

(a) (b)

Fig. 8: Sample results from database B. (a) Original image;
(b) Normalized gray image image from (a)

The first 105 participants contributed 2,520 images ((105×2)
fingers × 6 images × 2 sessions), captured at two different
times. For each participant, six images were provided for
each of their index and middle fingers during each session,
resulting in 24 images (6 images × 2 fingers × 2 sessions)
for two sessions. The remaining 51 participants contributed
only 612 images, exclusively collected during the first session.
In our experiments, only the first 2,520 images captured at
two sessions are used for performance evaluation. To facilitate
matching, we extract the ROI region using the preprocessing
approach [14] and normalize it to 49× 181.

3) Database C: The MMCBNU6000 finger vein database
[75] comprises 6,000 images (100 volunteers × 6 fingers ×
10 images) from 100 volunteers. Each volunteer contributed
60 images (6 fingers × 10 images) captured from the index,
middle, and ring fingers of both hands. Due to potential
variations such as translation, rotation, scale, scattering, and
uneven lighting in the collected images, which could degrade
the verification performance, we extracted ROIs. The resulting
ROI images were resized to 59× 127. As a result, 6,000 ROI
images were obtained.

Both the original images and the resulting ROI images
for the three databases are displayed in Figs. 7, 8, and 9,
respectively.

B. Experimental Settings

Each dataset is partitioned into the training set, validation
set, and testing set. The training set is used to train the super
network, while the validation set is utilized for assessing the
subnets’ performance within the super network and optimize
the controller’s parameters. The testing set is reserved for
evaluating the performance of the optimal neural network
model. For database A, which consists of 600 fingers from 100
subjects, treating each finger as a distinct class results in 600
classes. For each class, images are selected in a 4 : 2 : 4 ratio
for training, validation, and testing, respectively. Therefore,
the training set comprises 2,400 images (4 images × 600
fingers), the validation set includes 1,200 images (2 images
× 600 fingers), and the testing set consists of 2,400 images
(4 images × 600 fingers). Similarly, for database B, there are
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(a) (b)

Fig. 9: Sample results from database C. (a) Original image;
(b) Normalized gray image image from (a).

TABLE II: Time cost (h) of AG-NAS on three databases

Approach Database A Database B Database C
w/o supernet (one epoch) 255.62 111.13 255.62
w/o supernet (5 epochs) 1227.84 555.58 1277.84

AG-NAS 5.12 2.21 5.12

1,050 images (5 images × 210 fingers) in the training set,
420 images (2 images × 210 fingers) in the validation set,
and 1,050 images (5 images × 210 fingers) in the testing set.
Finally, for database C, the training set comprises 2,400 images
(4 images × 600 fingers), the validation set consists of 1,200
images (2 images × 600 fingers), and the testing set includes
2,400 images (4 images × 600 fingers).

In the experiments, we employ the SGD optimizer on
the validation set to optimize the controller with a learning
rate of 0.05, a momentum parameter of 0.9, and a weight
decay of 2.5 × 10−4. In addition, the Adam optimizer on
the training set is used to optimize the supernet parameters
with a learning rate of 0.001. During the training stage, the
supernet is trained based on 10 batches of training data at each
epoch, and the controller undergoes 50 times per epoch. For
the training of each controller, 10 architecture descriptors are
generated to determine 10 subnets, and the average accuracy
of these subnets on the validation set is utilized to update
controller’s parameters. AG-NAS produces an optimal CNN
after 200 training epochs, which is subsequently fine-tuned
for an additional 1,000 epochs on the training set with a batch
size of 32. The resulting CNN, exhibiting the best performance
on the validation set, is saved and then evaluated on the testing
set.

C. Search Efficiency

As shown in Fig. 4, the supernet includes 10 hidden layers,
each offering 13 optional architectures, resulting in a search
space of 1310 subnets. To efficiently explore this space, AG-
NAS leverages reinforcement learning for network architecture
search, consisting of a controller and a supernet iteratively
trained to discover the optimal vein recognition architecture.
To reduce time and storage costs, weights are shared among
subnets in the supernet. During supernet training, the controller
generates 10 subnets from the supernet, each trained on the
training sets. This process, effectively training the supernet
10 times is repeated. For controller training, the controller
generates 10 architecture descriptors, yielding 10 subnets from
the supernet. The average accuracy of these 10 subnets on
the validation set serves as a reward to update controller’s
parameters. The controller is iteratively trained 50 times, and
this process alternates between controller and supernet training
over 200 iterations. As a result, the optimal architecture is

TABLE III: Time cost (h) of representative approaches on the
three databases

Approach Database A Database B Database C
ENAS [58] 5.48 2.26 5.94

ProxylessNAS [34] 9.94 3.21 8.04
DU-DARTS [33] 10.69 3.15 8.56

AG-NAS 5.12 2.21 5.12

found after 105 (200 iterations × 50 times × 10 subnets)
attempts by the controller, and 2,000 (200 iterations × 10
times) iterations of supernet training. If the supernet strategy
is not employed, the controller outputs 10 descriptors, each
used to obtain 10 subnets. These subnets are then individually
trained from scratch on the training set for each iteration, with
their average accuracy on the validation set serving as the
reward for controller training. Without the supernet strategy,
the controller makes 105 (200 iterations × 50 times × 10
subnets) attempts for architecture search, resulting in training
105 subnets or 105 iterations for subnets training. Comparing
to the two approaches, our supernet mechanism (training only
2,000 subnets) incurs a significantly lower computation cost.
Table II lists the time cost of our approach with and without
the supernet for 105 controller attempts. From Table II, we
observe that our approach with the supernet takes only a
few GPU hours, i.e., 5.11 hours for database A, 2.22 hours
for database B, and 5.11 hours for database C, to search
for an optimal architecture from the 1310 search space. In
contrast, our approach without the supernet strategy takes over
100 GPU hours on each database to determine the optimal
architecture, even with each subnet trained for only one
epoch. The time cost further increases significantly, surpassing
500 GPU hours for the three databases when each subnet
is trained for 5 epochs. Typically, deep learning networks
require more than one epoch for training. In addition, we
list the time cost of representative approaches on the three
databases in Table III. The experimental results in Table III
illustrate that our AG-NAS approach achieves the lowest time
costs on the three datasets. The following facts may explain
such a good performance: AG-NAS employs the parameter
sharing scheme to train different subnets, effectively reducing
thereby parameter updating costs. Moreover, its architecture
search for subnets occurs within a discrete search space. In
contrast, ProxylessNAS [34] and DU-DARTS [33] optimize
the architecture searching within a continuous space, leading
to an increase in time costs. Overall, both ENAS [58] and AG-
NAS exhibit comparable search times due to their utilization
of parameter-sharing strategies during architecture search. The
reduced computation time can be attributed to the efficacy
of our attention mechanism, which is proficient in learning
features with long-range dependencies and exploring optimal
architectures within a reduced number of iteration epochs.

D. Verification Performance

To evaluate the performance of AG-NAS, we conduct a
comprehensive comparison with representative neural network
models, including ResNet [19], VGGNet [20], GoogLeNet
[18], FV-CNN [24], PV-CNN [5], LightweightDeepCNN [28],
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(a) (b) (c)

Fig. 10: ROC of representative approaches on the test datasets. (a) Database A; (b) Database B; (c) Database C.

TABLE IV: EER (%) of representative approaches on the test datasets

Approach Database A Database B Database C Average

Deep learning-based

ResNet [19] 2.25 2.48 1.04 1.92
VGGNet [20] 5.24 3.37 2.42 3.68

GoogLeNet [18] 1.83 1.98 1.25 1.69
FV-CNN [24] 3.21 4.16 1.58 2.98
PV-CNN [5] 1.75 1.78 1.38 1.64

LightweightDeepCNN [28] 2.21 1.28 1.46 1.65
Arcvein [30] 2.92 2.78 1.21 2.30

FVRASNet [29] 2.83 1.98 1.92 2.24

NAS-based

ENAS [58] 1.54 1.09 1.21 1.28
ProxylessNAS [34] 1.59 1.39 1.04 1.34
DU-DARTS [33] 1.37 1.78 1.08 1.41

AG-NAS 1.25 0.99 1.00 1.08

Arcvein [30], and FVRASNet [29] as well as ENAS [58],
DU-DARTS [33], and ProxylessNAS [34], on three finger-
vein databases. All models undergo training on the designated
training sets, and their performance on the respective testing
sets is reported for comparative analysis. As described in
Section IV-B, the testing sets consist of 2,400 images for
database A, 1,050 images for database B, and 2,400 images
for database C. In this experiment, we employ the commonly
used equal error rate (EER) to estimate the performance of our
approach. The EER is the point at which the false acceptance
rate (FAR) equals the false rejection rate (FRR). Subsequently,
the ROC curves are plotted with FAR against FRR. Table IV
presents the EER values of representative approaches on the
testing datasets of the three databases, and the corresponding
ROC curves are illustrated in Fig. 10.

The experimental results reveal that the proposed AG-NAS
outperforms the representative approaches, demonstrating the
lowest verification errors of 1.25%, 0.99%, and 1.00% on
databases A, B, and C, respectively. Furthermore, our approach
achieves a lower average EER of 1.08% compared to other
methods. In addition, NAS-based approaches consistently
achieve significantly lower average EERs than deep learning-
based approaches, although the EER might be slightly higher
for a particular single database, showcasing global optimal
performance rather than local optima. For example, while
DU-DARTS exhibits a higher ERR than LightweightDeep-
CNN on database B (1.78% against 1.28%), it outperforms
LightweightDeepCNN in improving the average EER (1.41%
against 1.65%).

E. Identification Performance

In this experiment, we assess the identification performance
of representative models on the three databases. The models,
including ResNet, VGGNet, GoogLeNet, FV-CNN, PV-CNN,
LightweightDeepCNN, Arcvein, FVRASNet, ENAS, Proxy-
lessNAS, and DU-DARTS, are trained on the respective train-
ing sets and evaluated on the testing sets. The identification
results for the three databases are summarized in Table V.

The consistent trends across the experimental results in
Table V demonstrate that AG-NAS achieves the highest iden-
tification accuracy among the representative approaches, i.e.,
97.33% for database A, 97.92% for database B, and 98.29%
for database C. Overall, our approach exhibits more than a
1% improvement in the average identification accuracy. Fur-
thermore, NAS-based approaches, i.e., ENAS, ProxylessNAS,
and DU-DARTS, outperform most handcrafted architecture-
based methods in terms of identification accuracy.

F. Discussions

The experimental results presented in Table II, Table IV,
Table V, and Fig. 10 indicate that AG-NAS outperforms
existing NAS-based approaches, including ENAS, Proxyless-
NAS, and DU-DARTS, as well as the manually designed
CNNs, such as ResNet, VGGNet, GoogLeNet, FV-CNN, PV-
CNN, LightweightDeepCNN, Arcvein, and FVRASNet. The
superior performance can be attributed to several factors.
The differentiable architecture search approaches, such as
ProxylessNAS and DU-DARTS, suffer from two main issues:
the weak robustness to the performance collapse and the
limited generalization ability in the searched architectures,
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TABLE V: Accuracy (%) of representative approaches on the test datasets

Approach Database A Database B Database C Average

Deep learning-based

ResNet [19] 96.21 93.76 98.25 96.07
VGGNet [20] 91.21 92.57 96.04 93.27

GoogLeNet [18] 96.21 95.84 97.04 96.36
FV-CNN [24] 93.42 92.47 96.21 94.03
PV-CNN [5] 96.25 96.53 97.17 96.65

LightweightDeepCNN [28] 95.08 97.22 96.96 96.42
Arcvein [30] 92.58 94.15 97.71 94.81

FVRASNet [29] 94.13 95.24 96.75 95.37

NAS-based

ENAS [58] 96.13 97.03 96.58 96.58
ProxylessNAS [34] 94.38 97.42 97.92 96.57
DU-DARTS [33] 96.29 96.73 97.75 96.92

AG-NAS 97.33 97.92 98.29 97.85
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Fig. 11: Ablation experiments on the test datasets. (a) Database A; (b) Database B; (c) Database C.

resulting in poor performance [76]. Moreover, ENAS with an
LSTM controller achieves limited performance because the
traditional LSTM may fail to capture long-dependency fea-
tures. In contrast, the attention mechanism in the transformer
operates over longer distances and possesses the advantage
of capturing long-dependencies within tokens. Therefore, the
attention GRU module in AG-NAS demonstrates the capability
to model longer sequences than conventional LSTM and GRU
models, thereby enhancing architecture search capacity.

Overall, NAS-based models exhibit better performance than
manually designed CNNs on the three databases, which may
be attributed to the following facts: 1) The architectures
of manually designed CNNs are shaped by prior human
knowledge. In general, human experts face challenges in fully
exploring the entire design space of DNN architectures due
to their limited knowledge and experience, particularly when
dealing with complex neural architectures. Furthermore, CNN
manually designed for specific tasks may exhibit poorly for all
vein recognition tasks or databases, resulting in poor gener-
alization ability. In contrast, NAS-based approaches leverage
rich prior knowledge by training the search strategy on the
validation set. This empowers NAS to effectively search for
an optimal architecture within an expansive space of subnets;
2) NAS automatically explores the architecture of deep neu-
ral networks through representation learning, establishing an
objective connection to enhanced recognition performance. In
existing NAS implementations, the controller takes a noise
sequence as input and iteratively determines parameters in
each layer to minimize decision errors in vein classifica-
tion. AG-NAS mitigates the need for manual architecture
design, eliminating the risk of discarding optimal networks for

classification. Similar advantages have been substantiated in
recent works across various tasks [32–34, 36]; 3) NAS-based
approaches exhibit the capacity to automatically generate an
optimal network for different vein recognition tasks. This
capability enhances generalization and concurrently reduces
the expenses associated with manual architecture design.

Our proposed AG-NAS demonstrates the ability to search
for the optimal network architecture on different databases.
Through experiments, we observe that the final networks are
prone to employ separable convo-relu-norm with kernel of
3× 3, max pool, and shortcut. For example, the final network
for the first database comprises 9 layers, derived from a
supernet with 13 layers via a direct path. This result shows
that our approach can determine the number of layers for a
given database, indicating that deeper networks may not nec-
essarily yield superior performance. In addition, the consistent
inclusion of shortcut connection (i.e., residual connection) in
all hidden layers underscores their significant role in enhancing
network performance, as supported by work [19]. Moreover,
separable convo-relu-norm with kernel of 3×3 is determined to
extract compact feature representation and reduced parameters.
The proposed AG-NAS approach can extends beyond vein
recognition, as it can be applied to other fields, such as face
recognition and fingerprint recognition. Minor adaptations may
be required by adjusting supernet’s hyperparameters, such as
the kernel size and number of kernels, to optimize performance
based on variations in input image sizes across different tasks.

G. Ablation Experiment
In AG-NAS, the integration of the self-attention mechanism

and GRU module enables the learning of dependencies among
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TABLE VI: EER (%) of representative approaches on three
databases

Approach Database A Database B Database C Average
Transformer-NAS 2.25 1.39 1.17 1.60

GRU-NAS 1.67 0.89 1.29 1.28
AG-NAS 1.25 0.99 1.00 1.08

TABLE VII: Accuracy (%) of representative approaches on
three databases

Approach Database A Database B Database C Average
Transformer-NAS 95.83 97.13 97.04 96.67

GRU-NAS 96.71 97.62 96.58 96.97
AG-NAS 97.33 97.92 98.29 97.85

sequences in a recurrent manner. In this section, we conduct
ablation experiments to evaluate the performance of each mod-
ule w.r.t the improvement of recognition accuracy. To facilitate
the description, we directly employ the transformer with two
self-attention layers as a controller for architecture search, rep-
resented as transformer-NAS. In addition, we remove the self-
attention mechanism from AG-NAS, denoted as GRU-NAS.
The experimental results of the representative approaches on
the three databases are listed in Tables VI and VII, and the
corresponding ROC curves are depicted in Fig. 11, which
demonstrate that the integration of the self-attention and GRU
model allows to achieve higher recognition performance. In
addition, we observe that GRU-NAS outperforms transformer-
NAS, and this could be attributed to several facts. The trans-
former with extensive hyperparameters is typically capable
of learning long-dependencies when trained on large training
datasets. In our experiment, however, the limited training data
may result in overfitting fo the transformer. Conversely, GRU
is adept to capture temporal dependencies without requiring
extensive data, thereby achieving higher recognition accuracy
in our constrained dataset. Compared to transformer-NAS and
GRU-NAS, AG-NAS can learn long-range dependencies with
limited training data by introducing the attention mechanism
into GRU. In other words, AG-NAS combines the advantages
of GRU-NAS and transformer-NAS to optimize performance.

V. CONCLUSION

In this paper, we have proposed AG-NAS, a novel atten-
tion GRU-based neural architecture search scheme to search
automatically for the optimal network architecture for finger-
vein recognition. Our AG-NAS comprises two modules: the
controller and the supernet. In AG-NAS, we investigated an
attention GRU as the controller to generate the parameters
based on which an optimal network is determined from
the supernet. By introducing the attention mechanism into
the recurrent network, we investigated an attention GRU to
improve the feature representation capacity of learning long-
range dependencies. We designed a parameter-sharing supernet
to enhance search efficiency. In particular, AG-NAS could
search for optimal network architectures for different datasets.
For example, we obtained, for our dataset, a final network with
9 layers, including separable convo-relu-norm with a kernel
of 3 × 3 and residual connection. These results imply that
our approach can automatically infer an optimal lightweight

network with residual connections, as such a lightweight
network can alleviate overfitting on a small dataset while
the residual connection can mitigate information loss and
vanishing gradient. In our experiments, we compared AG-NAS
with various vein classifiers and NAS-based approaches. The
experimental results on three finger-vein databases demon-
strate that our approach is capable of automatically searching
for the optimal network architecture, yielding state-of-the-art
performance. In the future, we plan to extend the application
of our approach to other biometric modalities, such as palm
vein, fingerprint, and hand vein, to improve the recognition
performance.
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