
1

Unsupervised Sensor-based Continuous
Authentication with Low-Rank Transformer Using

Learning-to-Rank Algorithms
Zhenyu Yang, Yantao Li, Senior Member, and Gang Zhou, Fellow, IEEE

Abstract—With the rapid development of the Internet of
Things (IoTs) and mobile communications, mobile devices have
become indispensable in our daily lives. Given the substantial
amount of private information stored on these devices, the
security of mobile devices has emerged as a significant con-
cern for users. Different from conventional methods such as
PINs, fingerprints, and face IDs, which authenticate users only
during the initial login stage, continuous authentication ensures
consistent verification while mobile devices are in use. Current
continuous authentication methods require extensive data from a
series of users for effective training. Nevertheless, it is challenging
to collect sufficient amount of data within a limited time. In
this paper, we propose CALL, an unsupervised sensor-based
Continuous Authentication system with a Low-rank transformer
using Learning-to-rank algorithms. The lightweight CALL is
capable of providing both spatial and temporal features for
end-to-end authentication. Specifically, CALL utilizes time series
data from a legitimate user, collected by the accelerometer,
gyroscope, and magnetometer sensors on smartphones, to train
a pure one-dimensional autoencoder for spatial features and a
shuffle low-rank Transformer (SLRT) for temporal features in
the training phase. In the authentication phase, the trained pure
one-dimensional autoencoder captures spatial features by recon-
structing input data to obtain the reconstruction error, and SLRT
captures temporal features by predicting a ranking vector that
reveals the order of the shuffled feature sequence. The predicted
ranking vector is then used to recover the shuffled sequence
and the similarity between the frequency spectrum sequences
of the recovered sequence and the original time series data is
calculated. The reconstruction error and similarity are compared
against pre-defined thresholds, and CALL authenticates a user
as legitimate only if both values fall below their respective
thresholds. Finally, we evaluate the performance of CALL on
UCI HAR, WISDM HARB, and our dataset, and the extensive
experiments illustrate that CALL reaches the best performance
with 96.43%, 95.24% and 96.92% accuracy, and 4.28%, 4.76%
and 3.86% EERs on the three datasets, outperforming state-of-
the-art continuous authentication methods.

Index Terms—Continuous authentication, Low-rank Trans-
former, Learning-to-rank algorithms, Temporal features, Spatial
features.

I. INTRODUCTION

Zhenyu Yang and Yantao Li are with the College of Com-
puter Science, Chongqing University, Chongqing 400044, China (e-mail:
{20172725,yantaoli}@cqu.edu.cn).

Gang Zhou is with the Department of Computer Science, William & Mary,
Williamsburg, VA, 23185, USA (e-mail: gzhou@cs.wm.edu).

Manuscript received September XX, 2023; revised XXXX XX, 201X. This
work was supported in part by the National Natural Science Foundation
of China under Grants 62072061 and U20A20176. (Corresponding author:
Yantao Li.)

NOWADAYS, mobile devices, such as smartphones and
smartwatches, have become indispensable tools in our

daily lives. They provide significant convenience for people
to conduct electronic payments using digital wallets, share
documents through file transfer applications, and communicate
via chat software. As a result, these devices store a substantial
amount of private and sensitive information, such as bank
account details, confidential files, chat records, and personal
photos. To protect against information disclosure, it is im-
perative to implement reliable authentication mechanisms to
ensure the security of mobile devices. Common authentication
mechanisms include the use of PINs, graphical passwords,
Face IDs, and fingerprints to unlock mobile devices. However,
these methods are one-time authentication solutions, offering
protection solely during the login period. Studies indicate that
smudge attacks [1], shoulder surfing attacks [2], and password
inference attacks [3] can potentially compromise these one-
time authentication mechanisms. Moreover, these methods do
not detect illegal users once devices are successfully logged
in.

To address these issues, continuous authentication mecha-
nisms are designed to provide constant security protection for
the duration of device usage. Research on sensor-based human
activity recognition [4, 5, 6, 7] has inspired the development
of behavioral data-based continuous authentication, which
can be regarded as unique user signatures. Various types of
continuous authentication systems leverage different biomet-
ric behavioral data, including walking gait [8, 9], gestures
[10, 11], keystrokes [12, 13], and touchscreen dynamics [14,
15], to extract the behavioral patterns through device usage
[16, 17]. These continuous authentication systems successfully
authenticate users even under forgery attacks [18]. With the
rapid development of deep learning, continuous authentication
models based on deep neural networks (DNNs) can capture
representative temporal features of behavioral biometrics [19].
To train such DNNs for continuous authentication systems, a
substantial amount of data from diverse users are required,
leading to the exploration of data augmentation methods
and models [20, 21, 22] for addition data generation. Then,
these collected and augmented data undergo cleaning and
denoising, labeled corresponding classes for different users.
Finally, the processed and labeled data are used to train the
designed DNNs to learn representative features. Based on
our knowledge, there are several challenges for DNN-based
continuous authentication models:

2

• To collect substantial and diverse data, several subjects
or volunteers (10 or more) are required to participate.
However, it is challenge to ask volunteers to perform
repetitive actions on the specified mobile devices for
long periods, resulting in limited data collected from
volunteers.

• It is difficult to determine whether the labels of data
change after augmentation. While various studies propose
many data augmentation methods for continuous authen-
tication systems, there is a lack of regulations to ascertain
whether the generated sensor-based data maintain the
labels of original data, especially when the original data
are insufficient.

• DNN modules pre-trained on extensive datasets comprise
multiple layers and excessive parameters, posing the
challenge of their implementation on mobile devices with
limited computation and storage resources.

• Existing unsupervised DNN modules based on autoen-
coders solely provide a single reconstruction error as the
metric for authenticating users, leading to poor perfor-
mance [23].

To overcome these challenges, we propose CALL, a novel
unsupervised sensor-based Continuous Authentication system
with a Low-rank Transformer using Learning-to-rank algo-
rithms, which serves as a lightweight and end-to-end authenti-
cation mechanism. Different from methods that solely use one
model constructed from CNNs or recurrent neural networks
(RNNs) to capture complex spatial and temporal features
[24, 25, 26], CALL captures these two types of features
through two independent modules, respectively. Specifically,
we design an autoencoder based on a pure one-dimensional
CNN (pure-CNN) to capture spatial features of sensor-based
time series data and calculate a reconstruction error exclusively
using legitimate user data during the registration phase. The
reconstruction error is subsequently used as one factor to
authenticate the users’ identities. Simultaneously, the designed
shuffled low-rank Transformer (SLRT) encoder captures tem-
poral features of data in a low-dimension feature space by: 1)
predicting the ranking vector of randomly shuffled time series
data processed by the encoder of the pure CNN autoencoder;
2) recovering the shuffled data according to the predicted rank-
ing vector; and 3) calculating the similarity between frequency
spectrum sequences of the original data and the recovered
time series data using dynamic frequency wrapping (DFW)
algorithms. The user is identified as legitimate when both the
similarity and RE fall below their respective thresholds.

Thus, our contributions can be summarized as follows:

• We propose CALL, a lightweight and end-to-end unsu-
pervised Continuous Authentication system based on a
Low-rank transformer using Learning-to-rank algorithms.
Based on biometric behavioral data collected by smart-
phone sensors, CALL employs the designed pure-CNN
autoencoder and SLRT, trained solely on the legitimate
user data, to provide both spatial and temporal features
for end-to-end authentication.

• We design an autoencoder based on a pure one-
dimensional CNN to extract spatial features of raw sensor

data. The encoder in the autoencoder maps the data into a
low-dimension feature space, thereby effectively reducing
the parameters of downstream modules.

• We design SLRT based on the low-rank Transformer
encoder to extract temporal features by predicting the
ranking of the feature sequence from the encoder of
the autoencoder. We are among the first to utilize the
lightweight SLRT and learning-to-rank algorithms for
achieving unsupervised training in continuous authenti-
cation systems.

• The experimental results demonstrate that CALL outper-
forms state-of-the-art models in both accuracy and EERs
on UCI HAR (96.43% and 4.28%), WISDM HARB
(95.24% and 4.76%) and our dataset (96.92% and
3.86%), respectively.

The remainder of this paper is organized as follows: Sec-
tion II reviews the representative deep-learning continuous
authentication systems. Section III presents the preliminary
knowledge of DTW and Transformer for CALL. Section IV
details the proposed CALL in terms of overview, pure-CNN
autoencoder, SLRT, training policy, and authentication. Section
V evaluates the performance of CALL through comparisons
with state-of-the-art systems and ablation studies. Section VI
concludes this work and discusses the future work.

II. RELATED WORK

Commonly used authentication methods on mobile de-
vices are typically one-time identification mechanisms, in-
cluding PINs, fingerprints, face IDs, and graphical patterns.
These methods solely identify users during the login process,
leaving unlocked devices vulnerable to potential imposters.
Deep-learning continuous authentication methods based on
behavioral biometrics provide a consistent and robust secu-
rity solution for mobile devices. In particular, continuous
authentication can effectively prevent forgery attacks, where
imposters attempt to gain access to mobile devices through
random or skillful means [18]. These methods are tradi-
tionally categorized based on different behavioral modalities,
such as voice-based, motion-based, gestures-based, keystroke
dynamics-based, gait-based, and hand waving-based continu-
ous authentication mechanisms [27, 28, 29, 30]. In this section,
we categorize existing deep-learning continuous authentica-
tion systems based on different training policies into three
groups: pre-trained models, supervised-trained models, and
unsupervised-trained models.

A. Pre-trained Models

The pre-trained model typically comprises a pre-trained
feature extraction network model and a one-class classification
(OCC) module. Specifically, the feature extraction module is
pre-trained on a large dataset in a supervised manner to learn
the expression capability. In the registration phase, the data
of the legitimate user are processed by the pre-trained feature
extraction module and are then used to train the OCC module.
In the authentication phase, all user features are extracted and
then discriminated by the trained OCC. The authors of [22]
propose a feature fusion method to strengthen the designed

3

CNN-based feature extraction module and use the one-class
supporting vector machine (OC-SVM) as the OCC module.
The behavioral data are transformed into the frequency domain
by Fourier transformation and fused with the data in the
time domain after two pre-trained feature extraction modules.
The fused feature vector is proved to be more discriminative,
and the OC-SVM used in the OCC module exhibits the best
performance compared with various machine learning OCC
methods, such as k-nearest neighbors (kNN), random forest
(RF) and decision tree (DT). The authors in [31] propose a
novel convolution-based Transformer model, which combines
CNN and a self-attention mechanism to extract high-level
contextual semantic information from original time series data.
Moreover, this feature extraction model is pre-trained on one
dataset but demonstrates generalizability to achieve continuous
authentication with OC-SVM on another dataset.

Pre-trained models, which encompass pre-trained and OCC
modules, encounter challenges in achieving end-to-end train-
ing, leading to intricate training processes. Moreover, they
demand a substantial volume and diverse classes of data for
pre-training, increasing the cost of sufficient data collection. In
contrast, CALL undergoes training solely on the data from the
legitimate user, achieving end-to-end training with simplicity
and efficiency.

B. Supervised-trained Models

The supervised-trained model is a binary classifier trained
on an extensive dataset comprising two classes: positive and
negative. The positive data are from genuine users during the
registration phase, while the negative data are from imposters
during the authentication phase. The trained model is then
employed for authentication by discriminating whether the
user falls into the positive or negative class. In [32], the authors
put forward models based on three long short-term memory
(LSTM) backbones: simple LSTM, bidirectional LSTM, and
multilayer LSTM. After training these models on the same
dataset, the bidirectional LSTM-based model exhibits the best
average F1 Score. The authors of [23] adopt three data
augmentation methods, i.e., jittering, permutation, and scaling,
to increase dataset volume. A multilayer LSTM encoder is
designed for binary classification on each augmented dataset
for authentication. In [24], the authors combine the one-
dimensional residual network (1D-ResNet) and the squeeze-
and-excitation to create the pure CNN-based feature extraction
module, named 1D-ResNet-SE, for capturing patterns in time
series data. The downstream fully connected layers process
binary classification with the extracted features, and the results
demonstrate that the proposed model performs better than
models based on simple CNN and LSTM.

Supervised-trained models can capture users’ patterns from
the training set and achieve end-to-end training. However, they
face challenges when generalizing to real-world scenarios with
many unseen users and limited legitimate data. In contrast,
CALL demonstrates high performance in the authentication
phase, effectively accommodating both seen and unseen users.

C. Unsupervised-trained Models

The unsupervised-trained model captures features using
only one legitimate user without any given label during the
training stage and can distinguish the imposters and the
legitimate users at the authentication stage. To the best of our
knowledge, studies on unsupervised-trained models for con-
tinuous authentication systems are relatively rare. The authors
of [25] propose an unsupervised LSTM-based autoencoder to
reconstruct the input data during the training phase. During the
authentication phase, the trained autoencoder is used to recover
the test data, and then the reconstruction error is calculated. If
the error exceeds the threshold, the user is regarded as an im-
poster; otherwise, as the legitimate user. They demonstrate that
the designed unsupervised LSTM-based autoencoder performs
worse than the supervised binary classifier on many occasions.
In [33], the authors propose a CNN-based autoencoder and
an LSTM-based module to achieve unsupervised multi-task
training. Specifically, the autoencoder reconstructs the input
time series data and minimizes the reconstruction error, while
the LSTM-based module takes the reconstructed data as input
and recognizes the specific gait. Besides, the authors design a
style loss to ensure that the reconstructed data do not contain
private information other than authentication.

Unsupervised-trained models are only trained on data from
the legitimate user, capturing the pattern of this specific user,
which allows for end-to-end training and requires a minimal
volume of data. Therefore, deep-learning unsupervised-trained
models are promising, but their exploration has been limited.
Existing studies mainly focus on autoencoders, where spatial
and temporal features are processed together, resulting in
suboptimal accuracy [25, 33]. In this work, CALL, our pro-
posed model, represents a new unsupervised-trained approach
utilizing both spatial and temporal features for authentication.
To the best of our knowledge, it is the first deep-learning con-
tinuous authentication model based on autoencoder and low-
rank Transformer, trained through learning-to-rank algorithms.

III. PRELIMINARY

CALL incorporates a specially designed low-rank Trans-
former (LRT) module, the low-rank version of the classic
Transformer encoder architecture. Besides, inspired by the
time warping of dynamic time warping (DTW) [34], we
design the dynamic frequency wrapping (DFW) algorithm for
calculating the similarity between two frequency spectrum se-
quences. To better understand CALL, we provide preliminary
knowledge on the Transformer encoder and DTW algorithm
in this section.

A. Transformer Encoder

The Transformer architecture, comprising an encoder and a
decoder, is a prominent sequence-to-sequence model widely
used in machine translation [35]. Besides, the pre-trained
encoder of the Transformer serves as the backbone for various
classification models, including bidirectional encoder repre-
sentations from Transformers (BERT) [36] and cross-lingual
language models (XLMs) [37]. In this section, we provide a
preliminary introduction to the Transformer encoder.

4

The classic Transformer encoder comprises two main mod-
ules: an attention module and a positional feed-forward net-
work (FFN) module. In the attention module, three matrices
Q ⊆ RN×Dk , K ⊆ RM×Dk , and V ⊆ RM×Dv are used to
compute attention through the scaled dot-product operation in
Eq. (1):

Attention(Q,K,V) = softmax(
QK⊤
√
Dk

)V , (1)

where N and M denote the lengths (or values) of queries
and keys, Dv and Dk are dimensions of queries and keys.√
Dk is divided by the product of Q and K, which aims

to avoid gradient vanishing. The scaled dot-product in Trans-
former is applied in a multi-head attention manner, where
the original sequence with Dm dimensions is first projected
into Q, K, and V using three learnable matrices, and then
segmented into g different heads for each of them. In each
head, the dimensions of Q, K, and V become Dk

g , Dk

g and
Dv

g , respectively, and the attention operation in each head
is performed as in Eq. (1). Finally, the multi-head attention
module concatenates the outputs of all the g heads to form a
final self-attention vector A with the same shape as the input
data. Transformer incorporates a residual connection between
A and the input data, which are further processed by the
FFN. The FFN module is a fully connected layer that operates
as a non-linear activation projection of the outputs from the
attention module, enhancing the expressive capability of the
Transformer.

In this work, we enhance the classic Transformer encoder to
create a low-rank framework for capturing temporal features
in time series data. The improved Transformer features fewer
parameters and reduced inference latency while maintaining
outstanding performance.

B. DTW

For two similar yet misaligned time series, DTW can yield
a relatively small distance between them. In contrast, the
Euclidean distance, which assesses the point-to-point simi-
larity between two time series, is large. Fig. 1(a) illustrates
an example where DTW calculates the distance between
two misaligned yet similar sequences p = [p1, · · · , pn] and
q = [q1, · · · , qm], showing a delay between them. This is more
reasonable than the Euclidean distance as depicted in Fig. 1(b).
In Fig. 1, each dashed line represents the distance between
two corresponding connected points. Therefore, two identical
time series with minimal latency will exhibit a small DTW
distance value. Assuming p is a template sequence, classic
DTW is implemented through dynamic programming (DP):
First, a n×m matrix D is constructed, where di,j denotes the
Euclidean distance between pi and qj . Then, the accumulated
distance matrix A based on D can be calculated by Eq. (2):

ai,j = min[ai−1,j−1, ai−1,j , ai,j−1] + di,j , (2)

Finally, the minimum distance path l from an,m to a1,1 in
A can be searched by the DP algorithm, and each node
ak,o(k, o ∈ l) in this path represents the correspondence
between pk and qo. The optimization of DTW algorithms,

(a) DTW Distance

(b) Euclidean Distance
Fig. 1. DTW and Euclidean distance between p and q. Sequences p and q
are similar but there is a delay between them, and dashed lines illustrate the
matching mode when calculating the distance.

as outlined by Sakoe and Chiba [34], involves three main
conditions:

Boundary Condition: The starting and ending points are
at the bottom-left corner and the top-right corner of A,
respectively.

Continuity Condition: The path l moves one step at a time.
Specifically, both k and o in l can only increase by one on
each step along the path.

Monotonicity Condition: The points on the path l mono-
tonically progress over time and cannot retreat to the left or
downside.

Our DFW employs the same algorithm as DTW. However,
DFW compares the similarity of two frequency spectrum
sequences, while classic DTW calculates distances between
two time sequences.

IV. METHODS

We propose CALL, an unsupervised sensor-based contin-
uous authentication system using a low-rank Transformer
and learning-to-rank algorithms. CALL ensures continuous
authentication by using a pure-CNN autoencoder module and
an SLRT module to extract spatial and temporal features,
respectively. Specifically, in the unsupervised training phase,
both modules are trained using the enrollment behavioral
data of a legitimate user. In the authentication phase, CALL
labels the behavioral features of the current user as either “a
legitimate user” or “an imposter” by leveraging the output of
the trained pure-CNN autoencoder and SLRT, combined with
designed authentication algorithms. In this section, we first
present an overview of CALL and then detail the autoencoder
and SLRT modules. Next, we introduce formalized definitions

5

TABLE I
SUMMARY OF TERMS AND NOTATIONS.

Training Phase

Symbol Definition
x ⊆ RT×D = [x1 · · ·xT]⊤ Original time series data
x̂ ⊆ RT×D = [x̂1 · · · x̂T]⊤ Reconstructed time series data from the decoder
xex ⊆ RT×Dex = [x1

ex · · ·xT
ex]

⊤ Spatially extended time series data
f ⊆ RT×De = [f1 · · ·fT]⊤ Sequential feature from the encoder
O ⊆ NT = [o1 · · · oT]⊤(oi = i) Real order part of f and x

fs ⊆ RT×De = [fσ(1) · · ·fσ(T)]⊤ Shuffled sequential feature of f
Os ⊆ NT = [oσ(1) · · · oσ(T)]

⊤ Shuffled order part of fs based on O

R ⊆ RT = [r1 · · · rT]⊤ Ranking vector output by SLRT

Authentication Phase

xtest ⊆ RT×D = [x1
test · · ·xT

test]
⊤ Test original time series data

x̂test ⊆ RT×D = [x̂1
test · · · x̂T

test]
⊤ Reconstructed test time series data from the decoder

xs test ⊆ RT×D = [x1
s test · · ·xT

s test]
⊤ Shuffled test original time series data

fs test ⊆ RT×De = [f
σ(1)
test · · ·f

σ(T)
test]⊤ Shuffled sequential feature of ftest

Rtest ⊆ RT = [rtest1 · · · rtestT]⊤ Ranking vector output by SLRT
xtest r ⊆ RT×D = [x1

test r · · ·xT
test r]

⊤ Recovered test original time series data based on xs test and Rtest

x1:T
testi

⊆ RT = [x1
testi

· · ·xT
testi

]⊤ The ith spatial dimension’s sequence of xtest

Ai ⊆ RK = [Ai(ω1) · · ·Ai(ωK)]⊤ Amplitude-frequency spectrum vector of x1:T
testi

of the proposed learning-to-rank training strategy for achiev-
ing unsupervised learning. Finally, we provide details of the
proposed CAll containing sequence reorder (SR), DFW, and
reconstruction error calculation. Table I summarizes the terms
and notations used in this work.

A. Overview

As illustrated in Fig. 2, CALL comprises two phases: the
training phase and the authentication phase. The training phase
includes data collection, an autoencoder, and an SLRT. In data
collection, sensors embedded in mobile device, such as the
accelerator, gyroscope, and magnetometer, collect time series
data when the legitimate owner uses the device, which are
related to the behavioral patterns of the owner. The collected
raw sensor data within a specific period undergo preprocess-
ing, including denoising and normalization and are then stored
as the owner’s profile. This profile is used for training the
downstream autoencoder and SLRT. The autoencoder module
consists of an encoder and a decoder, both implemented
as pure 1D-convolution networks. This module focuses on
capturing spatial features of sensor-based time series data. The
encoder employs hierarchical 1D-convolution layers with non-
linear activation functions to map time series data x into a
feature sequence f , which maintains the time causality and has
the same length as x but with lower dimensions. The decoder,
also using hierarchical 1D-convolution structures, reconstructs
x̂ from f . The optimization objective of the autoencoder is to
minimize the distance between x̂ and x. Thus, during training,
the autoencoder captures spatial features of x through a series
of 1D convolution operations.

Since f serves as the input for the SLRT module, the
proposed SLRT operates in the feature space, aiming to
capture temporal features of the time series. The SLRT module
comprises two parts: the sequence shuffle module and the low-
rank Transformer. After the pure 1D-convolution encoder, the
feature sequence f can also be considered as time series data
since the time causality is preserved in f . In the SLRT module,
the sequence shuffle module first disrupts the order of time
steps of f to obtain an unordered sequence fs. Next, the
low-rank Transformer predicts a ranking vector using fs as
the input. Specifically, the ith element in the ranking vector
predicts the information of the actual order of f i

s. Thus, in the
training stage, the objective of the autoencoder is to minimize
the distance between x̂ and x, while SLRT aims to minimize

the distance between the predicted ranking vector and the
actual ranking vector. During the entire training process, the
autoencoder and SLRT are collaboratively optimized, repre-
senting an unsupervised multi-task optimization. Due to f
with lower spatial dimensions in the feature space and the
low-rank architecture of the Transformer, the computational
complexity of the Transformer is reduced, significantly de-
creasing the chance of overfitting by reducing parameters.

In the authentication phase, sensors embedded in mobile
devices collect real-time data from users, including both the
legitimate user and imposters, presenting new data to CALL.
The collected test data are preprocessed with the same methods
as used in training. With the normalized data, the trained
autoencoder reconstructs the data and the reconstruction error
Lrec is obtained by measuring the distance between the input
and output of the autoencoder. In the trained SLRT, the
output feature sequence of the encoder ftest is taken as the
input, and the sequence shuffle module disrupts the order
of ftest to generate a disordered sequence, serving as the
input of the LRT module. Note that the shuffle information
SI , representing the details of the replacement involved in
the shuffle operation, is recorded. Following this, the original
test data are shuffled using the same replacement method as
applied to ftest based on SI , and the shuffled original data
can be reordered by the SR algorithm, using the ranking vector
output by the LRT module. Finally, the FFT is applied to both
the original data and the reordered data. These transformed
data are utilized to calculate the frequency-spectrum similarity
Lsim by the DFW algorithm. CALL makes decisions as: 1) the
test data are from an imposter if Lrec>Threc (a threshold) or
Lsim>Thsim (a threshold); and 2) xtest is from the legitimate
user if Lsim ≤ Thsim and Lsim ≤ Thsim. These decisions
rely on the premise that the autoencoder and SLRT perform
effectively only when tested on the distribution of the target
class (the class for training).

B. Autoencoder Networks

Autoencoder networks comprise an encoder and a decoder,
both designed as pure hierarchical 1D-convolution networks,
as shown in Fig. 3. Given the time series data x ⊆ RT×D,
as illustrated in the upper portion of Fig. 3, the encoder
initiates a 1D convolution on x to expand spatial dimensions,
resulting in xex ⊆ RT×Dex , where Dex is larger than D.
Then, the following 1D-convolution layers in the encoder
compress the spatial dimensions of xex into a feature sequence
f ⊆ RT×De . Note that the kernels of the ith 1D-convolution
layer are half the size of those in the (i−1)th layer within the
encoder. For the decoder, as illustrated in the lower portion of
Fig. 3, it uses 1D-convolution layers symmetrically arranged
with the encoder to reconstruct the feature sequence f to x̂.

When padding is applied to x, the 1D-convolution kernel
k processes x to calculate features by Eq. (3):

FEATUREi =

{
0× k1 + ⟨x1, k2⟩, i = 1,∑s

j=1⟨xi−s+j, kj⟩, i ∈ (1, T],
(3)

where s denotes the kernel size (set to 2). Features
[FEATURE1· · ·FEATURET] obtained by one kernel

6

e

Lrec Threc

e

ometer ometer

Lsim Thsim

Fig. 2. Architecture of CALL. The left part represents the training phase, consisting of the training of the autoencoder and LRT using sensor-based data
from a legitimate user, which are collaboratively optimized. The right part indicates the authentication phase, which uses the trained autoencoder and LRT,
along with SR, DFW, reconstruction erro calculation, and FFT algorithms, to obtain reconstruction error Lrec and frequency spectrum similarity Lsim for
comparison with thresholds Threc and Thsim.

maintain temporal causality since the 1D-convolution kernel
slides across the time axis of x, and FEATUREi corre-
sponds to the ith sliding step, as expressed by Eq. (3). Thus,
1D-convolution layers alter only the spatial dimensions (based
on the number of kernels) of x, while maintaining temporal
causality. The low-spatial-dimension feature sequence f ⊆
RT×De , derived through a series of 1D-convolution operations,
can thus be regarded as time series data with the same temporal
causality as x.

C. Sequence Shuffle and Low-Rank Transformer

In this section, we introduce the SLRT module, which
processes f in the low-spatial-dimension space, consequently
reducing the input space of LRT.

Definition 1. For the time series data x, we define an order
vector O = [o1 · · · oT](oi = i) to express the actual order of
x.

Definition 2. Let Z = {1, 2, . . . , T} ⊆ N∗, and G(Z) be a
group of all bijective transformations on Z. When |Z| = T ,
G is a permutation group of order T , denoted as GT . For

∀σi ∈ GT , we define σi =

[
1 2 . . . T

σi(1) σi(2) . . . σi(T)

]
,

where [σi(1) σi(2) · · · σi(T)] is a permutation of
[1 2 · · · T]. There are T ! permutations, and thus |GT | =
T !.

1) Sequence Shuffle: As mentioned in Section IV-B, f is
considered as a time series with the same temporal causality
as x. The sequence shuffle module which disorders f and
the corresponding order vector O using the same permutation
method can be formalized by Eq. (4):

fs = [fσj(1) · · ·fσj(T)]⊤,

Os = [oσj(1) · · · oσj(T)]
⊤,

(4)

where fs and Os are shuffled feature of f and shuffled order
part O under the permutation of σj ∈ GT , respectively. For the
implementation of the sequence shuffle, we first concatenate
O and f at the spatial dimension to form a fusion tensor
Of ⊆ RT×(1+De). Then, we randomly shuffle the rows of the
fusion tensor with the random SEED, which is a variate for
each training sample, resulting in the shuffled fusion tensor
Ofs ⊆ RT×(1+De). Finally, we obtain Os ⊆ NT by taking
Ofs[:, 1], and fs ⊆ RT×De is obtained by taking Ofs[:, 2 :
De].

The sequence shuffle module enhances the generalization
capability of the downstream LRT, as the optimization target
of LRT is related to Os taking the shuffled feature fs as
input. Without the sequence shuffle, the optimization target of
LRT would always be related to O for the feature f of every
training sample, leading to a reduction in the generalization
of LRT.

2) Low-rank Transformer: On the one hand, the train-
ing samples for each legitimate user are collected within a
limited time. On the other hand, the traditional Transformer
involves many parameters that necessitate training on extensive
datasets. Therefore, inspired by [38], we design a low-rank
Transformer to regress the ranking vector R ⊆ RT using the
disordered feature fs, as illustrated in Fig. 4. LRT is a typical
Transformer encoder architecture, mainly comprising a low-
rank multi-head attention module (LRMHA) and a low-rank
feed-forward module (LRFF). The details of LRMHA, LRFF,
and low-rank encoder-decoder (LED) are presented in Fig 5.
In both LRMHA and LRFF, we use LED as a substitute for
matrix multiplication in the traditional Transformer to reduce
the parameters of the Transformer encoder. In the original
Transformer, matrix multiplication maps input data (T×m) to
output data (T ×n) using a parameter matrix W ⊆ Rm×n. In
contrast, as illustrated in Fig. 5(c), LED uses a linear encoder

7

T×D T×Dex1
D

C
o

n
v
o

lu
ti

o
n

L
ay

er

T×(Dex//2)1
D

C
o

n
v
o

lu
ti

o
n

L
ay

er

1
D

C
o

n
v
o

lu
ti

o
n

L
ay

erx̂ exx̂

Decoder

x

T×D

xex

T×Dex1
D

C
o
n

v
o

lu
ti

o
n

L
ay

er

T×(Dex//2)
f

T×(Dex//4)1
D

C
o
n

v
o

lu
ti

o
n

L
ay

er

1
D

C
o
n

v
o

lu
ti

o
n

L
ay

er

Encoder

k=(D,Dex,2) k=(Dex,Dex//2,2) k=(Dex//2,Dex//4,2)

k=(Dex//4,Dex//2,2)k=(Dex//2,Dex,2)k=(Dex,D,2)

Fig. 3. Architecture of the autoencoder for encoding x and reconstructing x̂. The upper portion is the encoder part, which consists of three 1D-convolution
layers to compress x into a feature sequence f used by the SLRT module. The lower portion is the decoder part, which comprises three 1D-convolution
layers symmetrically arranged with the encoder to reconstruct x̂ by f . For the kernel k = (cin, cout, 2), cin and cout represent spatial dimensions before
and after the 1D-convolution layer, respectively, and 2 indicates the kernel size.

E ⊆ Rm×r and a linear decoder D ⊆ Rr×n to approximate
W , as expressed in Eq. (5):

W ≈ E ×D, (5)

The parameters and floating-point operations (FLOPs) of
E and D are rm + rn = r(m + n), while W requires mn
parameters and FLOPs. By choosing a considerably smaller
value for r than m or n, the parameters of E and D
significantly decrease in comparison to W .

In LRT, the input feature fs = [fσj(1) · · ·fσj(T)] is first
added with positional encode P = [p1 · · ·pT] to obtain fsp =
[fσj(1) + p1 · · ·fσj(T) + pT]. Then, as shown in Fig. 5(a),
LRMHA uses fsp to calculate multi-head attention. It maps
fsp into three tensors, i.e., Q, K, and V , by three LED units,
and each tensor is divided into g heads, i.e., Q = {Qi}gi=1,
K = {Ki}gi=1, and V = {Vi}gi=1. For the ith head, the scaled
dot-product attention unit in LRMHA calculates attention by
Eq. (6):

Attenion(Qi,Ki,Vi) = Softmax(
QiK

T
i√

dq

)Vi, (6)

where dq indicates the dimension of query. LRMHA further
combines the attention from all the g heads to obtain the final
attention A ⊆ RT×De by Eq. (7):

A = LED(Dr(Concat(h1, h2, . . . , hg))), (7a)
hi = Attention(Qi,Ki,Vi), (7b)

where hi represents the attention for the ith head. After
LRMHA, LRT applies dropout to A, and the result is added
to fsp. Then, LRT uses layer normalization (LN), and the

normalized feature is further processed by LRFF. As depicted
in Fig. 5(b), LRFF comprises two LED units with the ReLU
activation function and dropout. The output of LRFF is calcu-
lated by Eq. (8):

Output =LEDoutput(Dr

(ReLU(LEDinput(LN(A+ fsp))))),
(8)

Finally, LRT obtains the ranking vector R by Eq. (9):

R = ϕ(Linear(LN

(LN(Dr(A) + fsp) +Dr(Output)))),
(9)

where ϕ denotes the non-linear activation function
Sigmoid(·), and Dr represents a dropout operation.
Note that the optimization objective of LRT relies on the
information provided by the order part Os of fs, and the
following part elaborates on the design of the training label
for SLRT and the training policy.

D. Training Autoencoder and LRT

As mentioned in Section IV-B, the optimization objective of
the autoencoder is to reconstruct the input time series sample,
and thus, the loss function is formalized as Eq. (10):

Lrec = Distance(x, x̂), (10)

where x̂ represents the reconstruction result of a training
sample x, and Distance(·, ·) denotes the measurement (using
L2 distance) of the distance between the two samples. To
optimize SLRT, we first design the label by mapping elements
of the order part Os to the interval (0,1] by Eq. (11):

Os/T = [oσj(1)/T · · · , oσj(T)/T], (11)

8

T×(Dex//4)

T×

Fig. 4. Architecture of the LRT module. It mainly consists of LRMHA and
LRFF, utilized for regressing the ranking vector using the disordered feature
fs of f . In LRT, LRMHA and LRFF correspond to MHA and FF in the
traditional Transformer encoder, respectively.

where T denotes the length of the training time series sample.
Before the mapping expressed by Eq. (11), each element of
Os is a natural number, while R, the output of SLRT, falls
within the interval (0,1) due to the sigmoid function of LRT.
An alternative solution to circumvent the label mapping is
to eliminate the last sigmoid function in LRT and use Os

as the label. However, this alternative approach results in a
significantly larger loss compared to Lrec and increases the
complexity for the converge of LRT. Given the designed label
Os/T and the ranking vector R of SLRT, we formalize the
loss function Ldis by Eq. (12):

Ldis = ||R−Os/T ||22, (12)

However, the loss calculated by Eq. (12) is hard to reveal and
recover the actual order of the disordered data part fs within
f . As shown in Table II, we observe that the loss of the model
is low, but the ranking vector does not accurately reveal the
actual order of the data part.

To alleviate this problem, we design an order consistency

TABLE II
PERFORMANCE OF SLRT SOLELY OPTIMIZED BY Ldis . Os REPRESENTS

THE ORDER PART OF fs , Os/T AND R INDICATE THE LABELS AND
RANKING VECTOR OF SLRT. THE PREDICTED ORDER IS OBTAINED BY

MATCHING THE RANKING VECTOR WITH AN ORDER NUMBER (1-4).

Os Os/T R Predicted Order Loss

4,2,3,1 1,0.5,0.75,0.25 0.95,0.69,0.68,0.24 4,3,2,1 0.2088

loss Loc formalized as Eq. (13):

Loc = Rank(R,Os)

=

T∑
i=1

T∑
j=1

max(0,−(ri − rj)(Osi −Osj)),
(13)

where ri, rj ∈ R, and Osi ,Osj ∈ Os. Recalling that we
train the autoencoder and SLRT networks collaboratively, we
formalize the total loss Ltotal for CALL as Eq. (14):

Ltotal = Ex∼X [αLrec + βLdis + γLoc]

=
1

N

N∑
[α||Dec(En(x))− x||22

+ β||LRT (S(En(x)))− S(O/T)||22
+ γRank(LRT (S(En(x))), S(O/T))],

(14)

where α, β, γ (α + β + γ = 1) indicate penalty factors, N
is the total number of training time series samples, Dec and
En represent the decoder and encoder of the autoencoder, S
denotes the sequence shuffle operation in SLRT, L is the length
of each sample, and O is the order part of En(x). Therefore,
the optimization objective for training CALL is to minimize
the total loss Ltotal.

E. Authentication

After trained on X , which contains a legitimate user’s data,
the autoencoder and SLRT in CALL captures spatial features
and temporal causality of X , respectively. In this section, we
detail the REC, SR, and DFW algorithms designed for CALL
authentication.

1) Reconstruction Error Calculation: The autoencoder re-
constructs x̂test from a test sample xtest and calculates Lrec

using Eq. (15):

Lrec = ||x̂test − xtest||2, (15)

Lrec is below or equal to Threc if xtest is legitimate, while
Lrec is large (beyond Threc) if the test sample is not from
the distribution of X . The autoencoder consisting of pure 1D-
convolution networks processes only spatial dimensions and
maintains temporal causality of xtest as expressed by Eq. (3).
Therefore, the low Lrec indicates that spatial dimensions at
every time step of the test sample xtest are consistent with the
real distribution. However, to demonstrate the legitimate test
sample, the similarity in spatial dimensions must be improved.
Therefore, as a complement, we use the trained SLRT to
capture temporal features of xtest.

9

LED LED LED

Scaled Dot-Product Attention

Concatenate

LED

Attention

Q K V

Drop out

(a) LRMHA

LED

Drop out

ReLU

LED

Output

(b) LRFF

T×m

Linear_E

T×r

Linear_D

T×n

(c) LED
Fig. 5. Architectures of LRMHA, LRFF, and LED for constructing LRT.

2) Sequence Reorder: We design the SR algorithm to
reorder xs test based on the ranking vector Rtest. The
trained SLRT captures the temporal causality of xtest =
[x1

test · · ·xT
test] by predicting the time order of the shuffled

feature ftest (obtained from xtest after encoder) accord-
ing to the spatial dimensions of ftest. Specifically, recall
that the sequence shuffle in SLRT disorders the feature
and the order part of ftest to obtain the unordered feature
fs test = [f

σk(1)
test · · ·f

σk(T)
test] and the order part Os test =

[oσk(1) · · · oσk(T)] of ftest, respectively. LRT predicts the
ranking vector Rtest by taking fs test as input. The per-
mutation information of ftest is recorded as SI (related to
σk ∈ GT), and xtest is disordered based on SI to obtain the
unordered sample xs test = [x

σk(1)
test · · ·x

σk(T)
test]. Particularly,

the implementation to obtain the disordered sample xs test

based on SI is achieved by applying the same random SEED
as used for shuffling ftest to disorder xtest.

The goal of SR is to recover the disordered test sample
xs test according to Rtest from LRT, where each element
rtesti of Rtest predicts the actual order of x

σk(i)
test . The

recovery steps are as follows: 1) construct an empty vector
xtest r; 2) find the minimum element rtestj in Rtest; 3)
append x

σk(j)
test of xs test to xtest r; 4) set rtestj as 1 (recall 1

is the upper bound of elements in Rtest); and 5) loop through
steps 2)-4) until the length of xtest r reaches T . The process
of SR is summarized in Algorithm 1, and based on SR, we
obtain the reordered sample xtest r. Next, we apply DFW
and FFT algorithms to the test sample xtest (not shuffled)
and xtest r.

3) DFW: We use DFW to calculate the similarity between
the frequency spectrum sequences of x1:T

testi and x1:T
test ri

. FFT
aims to transform time series data from the time domain to the
frequency domain, where the frequency spectrum (amplitude-
frequency) can be obtained. Recall that xtest ⊆ RT×D

is multivariate time series data, and for each dimension’s

Algorithm 1: SR Algorithm
Input: Unordered test sample xs test, ranking vector

Rtest

Output: Recovered test sample xtest r

1 Declare an empty vector xtest r

2 for iteration 1 to T do
3 j ← Index Of(Min(Rtest))

4 Append x
σk(j)
test to xtest r

5 rtestj ← 1
6 end
7 return xtest r

sequence x1:T
testi , it is processed by FFT as shown in Eq. (16):

F (ωk) =
1

T

T∑
n=1

xn
testie

−jωkn = Ai(ωk) · ejθ(ωk), (16)

where ωk indicates the frequency, and Ai(ωk) represents
the corresponding amplitude spectrum. Similarly, frequency
spectrum of x1:T

test ri
can also be obtained by Eq. (16), and

the amplitude spectrum is denoted as Ari(ωk). The total
non-negative frequency K of x1:T

testi and the value of each
frequency ωk (K in total) after FFT are determined by Nyquist
frequency principle and the sampling rate. Each frequency ωk

corresponds to a non-negative amplitude Ai(ωk) according
to Eq. (16), where we can regard the two amplitude vectors
Ai = [Ai(ω1) · · ·Ai(ωK)] and Ari = [Ari(ω1) · · ·Ari(ωK)]
as two sequences. Inspired by DTW, we use the warping
algorithm similar to that in DTW (called DFW) to calculate
the similarity Lsimi = DFW (Ai,Ari) between these two
sequences in each dimension. Finally, we compute the average
similarity across all dimensions to obtain the Lsim using Eq.

10

Fig. 6. Visualization of threshold selection. Blue points represent samples
taken from the testing fold for determining thresholds.

(17):

Lsim =
1

D

D∑
i=1

DFW (Ai,Ari), (17)

As mentioned in Section IV-A, after Lrec and Lsim are
obtained by Eq. (15) and Eq. (17), we compare thees values
with the predefined thresholds Threc and Thsim, and then,
the corresponding identity of xtest can be determined based
on these comparison outcomes.

4) Thresholds Selection: The authentication is achieved by
comparing Lrec and Lsim derived from the outputs of CALL,
against two thresholds: Threc and Thsim. Employing N-fold
cross-validation for training and testing CALL, we leverage
50% of the testing fold (comprising entirely positive samples)
to determine the two thresholds, and the remaining 50% are
used to evaluate the performance of CALL. To illustrate the
threshold selection process, we present an example in Fig.
6, where the blue points represent samples from the testing
fold for determining threshold. We then set the minimum
reconstruction error (RE) and DFW similarity values needed
to classify all the blue points as positive samples as the
thresholds, depicted as the red lines in Fig. 6.

V. EXPERIMENTS AND RESULTS

A. Experimental Settings

In this section, we provide a comprehensive overview of
the experimental settings. First, we elaborate on the datasets
for the performance evaluation, including our dataset and two
public datasets. Then, we detail the preprocessing steps applied
on these datasets, comprising denoising, normalization, and
sliding window segmentation. Finally, we detail the training
and testing policy, and introduce commonly used metrics for
the performance evaluation of CALL.

1) Datasets: For our dataset, sensor-based behavioral data
were collected using the built-in accelerometer, gyroscope, and
magnetometer on smartphones by 100 volunteers. Each vol-
unteer was instructed to perform three indoor tasks: document
reading, text production, and navigation on a map to locate

a destination, across 24 sessions (8 reading, 8 writing, and 8
map navigation) lasting 2 to 6 hours. The sensors’ sampling
rate was set at 100Hz. After data collection, we select data
from 88 volunteers (excluding 12 with significant noise and
partially missing data). For training and testing continuous
authentication systems, we extract a total of 100 minutes of
data from 24 sessions for each user, basically covering the
majority of data for each session. The accelerometer measures
the direction of mobile devices and gravitational force in
meters per second squared. The gyroscope measures the rate
of angle change around the three axes of mobile devices.
The magnetometer records magnetic field intensity in the
operating environment. The accelerometer data at the ith time
step are represented by a vector Ai

c = [xi
a yia zia]

⊤ ⊆
R3, where xi

a, yia, and zia correspond to the three orthog-
onal axes. Similarly, the gyroscope and magnetometer data
can be denoted as Gi

r = [xi
g yig zig]

⊤ and M i
a =

[xi
m yim zim]⊤. We use the fusion vector Fusioni =

[xi
a xi

g xi
m yia yig yim zia zig zim]⊤ ⊆ R9 to rep-

resent the sample collected by the three sensors at the ith
time step. Finally, for each participant, we obtain the data
X = [Fusion1 Fusion2 · · · Fusion600000]⊤ ⊆
R600000×9.

UCI HAR dataset [39] was collected using smartphones
worn around the waist by 30 participants aged 19 to 48.
Participants were instructed to perform six daily activities:
walking, walking upstairs, walking downstairs, sitting, stand-
ing, and lying down. The smartphone’s sampling rate was
set at 50 Hz, and the recorded sensor data included the
triaxial linear acceleration and triaxial angular velocity. For
this dataset, sensor data from 9 individuals were excluded (user
IDs: 2, 4, 9, 10, 12, 13, 18, 20, and 24), resulting in this dataset
comprising information from 21 participants.

WISDM HARB dataset [40] was collected using smart-
phones and smartwatches worn by 51 participants. Participants
were instructed to conduct 18 specified activities within three
minutes each day, consisting of 5 simple and 13 complex
activities. In this dataset, data are collected by the accelerom-
eter and gyroscope at a consistent rate of 20 Hz from
smartphones and smartwatches. According to the study in [41],
7 participants (user IDs: 1616, 1618, 1637, 1638, 1639, 1640,
and 1642) were identified as abnormal, resulting in this dataset
containing information from 44 participants.

2) Data Preprocessing: For our dataset, based on the
88 participants’ data, we first employ a low-pass fil-
ter for denoising, and then normalize each participant’s
data X . For the ith spatial dimension X1:600000

i ⊆
R600000×1, we apply min-max normalization using the for-
mula: Xj

i −Min{Xt
i}

600000
t=1

Max{Xt
i}600000

t=1 −Min{Xt
i}600000

t=1
. Following normaliza-

tion, we utilize a sliding window with a size of 200 and
a sliding step of 200 to segment the normalized X into
600000
200 = 3000 windows, denoted as X = {x1, x2, . . . , x3000}

(xi ⊆ R200×9). Thus, each participant’s data in our dataset
are divided into 3000 time series samples. For UCI HAR and
WISDM HARB, which are benchmark datasets, we set the
size of the data window as 2.56 seconds. After normalization
identical to that of our dataset, the profile of the three datasets

11

TABLE III
PROFILE OF UCI HAR, WISDM HARB AND OUR DATASETS AFTER

PREPROCESSING.

Dataset User Length of Data Window Dimension

UCI HAR 21 128 6
WISDM HARB 44 52 6

Ours 88 200 9

we use is presented in Table III.
3) Training Settings: We detail the training and testing

policy, employing the five-fold cross-validation method. As-
suming there are N users in a dataset, one is regarded as the
legitimate user, and the remaining N − 1 users are considered
as imposters. The data from the legitimate user, denoted as X ,
are used for training, and a five-fold cross-validation strategy
is adopted to train and test CALL. Particularly, imposters’ data
Tim equivalent to 20% of X (one fold) are randomly selected
from the rest N−1 users. These imposter samples Tim are then
appended to each testing fold to evaluate the performance of
CALL. Thus, for each dataset involving N potential legitimate
users in our experiments, N CALL systems can be trained and
N metric values (e.g., the accuracy) can be obtained. Finally,
we calculate the mean of the N values from the N trained
systems as the final performance result.

4) Metrics: For our continuous authentication system
CALL, we employ three metrics to evaluate the performance
in each testing fold appended with Tim: accuracy (ACC)=

TP+TN
TP+TN+FP+FN , F1 Score= 2·TP

2·TP+FP+FN , and EER. In
particular, EER is a comprehensive indicator representing
the balance between the security and convenience of using
continuous authentication systems, and it is the point where
FAR= FP

FP+TN equals to FRR= FN
FN+TP .

B. Overall Performance

1) Fundamental Results: In this section, we present fun-
damental results of CALL on the three datasets. Specifically,
we first provide training loss curves on the three datasets to
demonstrate convergence. Then, employing SR in Algorithm
1 and FFT, we visualize sequence diagrams and frequency
spectrum sequences for the original legitimate data v.s. the
reordered legitimate data, and the original imposter’s data v.s.
the reordered imposter’s data, to illustrate the effectiveness of
CALL.

Loss curve. We show loss curves for CALL trained on a
randomly selected legitimate user from the three datasets in
Fig. 7. As shown, all the curves converge to a small value,
i.e., 0.0016 on our dataset, 0.01 on UCI HAR, and 0.09 on
WISDM HARB. Furthermore, the loss curves trained on all
the other users exhibit a similar convergence trend to that
shown in Fig. 7.

Sequence diagram and frequency spectrum. For each se-
lected legitimate user X trained on the three datasets, we
can visualize a sequence diagram of one dimension within
a data window from the testing fold and show its FFT and
inverse FFT (IFFT) results. Taking our dataset as an example,

the visualization is illustrated in Fig. 8(a). Additionally, after
CALL is trained on X , we use CALL to process the same data
window of X to obtain a ranking vector and use Algorithm 1
to reorder this data window, where we also provide sequence
diagram, IFFT, and FFT results. We then compare the results
from the original data window of X with the reordered data,
as depicked in Fig. 8(b). On the one hand, we observe that
the sequence diagram of the reordered data globally exhibits
significant difference from the original data window, whereas
the ideal outcome would be for the reordered data to follow
the same trend as the original data window, as per the loss
function in Eq. (14). On the other hand, when focusing on
the local periods of the reordered data bounded by dashed
boxes, we find that each period follows the same trend as
the original data. Furthermore, after FFT, it becomes evident
that the frequency spectrum sequences of the reordered and
the original data are almost identical in shape, and the DFW
distance is small. Particularly, this pattern holds for all the
other dimensions of the data window and different data win-
dows on the three datasets. Fig. 8 reveals the effectiveness of
DFW distance for CALL, as the reordered data exhibit several
periods (dashed boxes) resembling the trend of original data.
Thus, the former can be regarded as a periodic signal changed
from the latter with high frequency, resulting in the latency
of the peaks and valleys with the same amplitude for the two
sequences in frequency spectrum after FFT. Therefore, DFW
performs well in calculating the two misaligned frequency-
spectrum sequences.

We then randomly select an imposter Xim from our dataset,
which is from the remaining N − 1 users, as mentioned in
Section V-A3. Using the similar methods as described above,
we compare the sequence diagrams, IFFT, and FFT results of
the original data window from Xim and the reordered one pro-
cessed by CALL, as illustrated in Fig. 9. We observe that the
sequence diagrams of the original and the reordered data are
similar over a large time range (approximately 0−1230ms in
Fig. 9(b)). However, the frequency spectrum of the reordered
one differs significantly from that of the original data, and the
distance between the original and the reordered data is large,
thereby validating the effectiveness of SLRT. Particularly, this
pattern holds for all the other dimensions as well.

2) Comparison with SOTA Methods: We compare our unsu-
pervised CALL system with three supervised and one unsuper-
vised state-of-the-art (SOTA) sensor-based continuous authen-
tication systems, i.e., supervised LSTMAuth (LSTMAuth-S)
[23], GMM-UBM [42] and 1D-ResNet-SE [24], and unsuper-
vised LSTMAuth (LSTMAuth-U) [23] on the three datasets,
i.e., UCI HAR, WISDM HARB, and our dataset. The average
accuracy and EER performance of CALL and the other three
systems is listed in Table IV.

We observe that CALL consistently outperforms the other
SOTA continuous authentication systems in terms of accuracy
and EER across all datasets. Specifically, on UCI HAR,
WISDM HARB and our dataset, CALL achieves the highest
accuracy of 96.43%, 95.24% and 96.92%, and the lowest
EERs of 4.28%, 4.76% and 3.86%, respectively. The superior
performance of CALL on our dataset can be attributed to
its larger size compared to the other two public datasets.

12

0 20 40 60 80 100 120 380 400
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

L
O

S
S

Epoch

UCI_HAR

Our Dataset

WISDM_HARB

Fig. 7. Loss curves of CALL on UCI HAR, WISDM HARB, and our dataset.

TABLE IV
PERFORMANCE COMPARISON AMONG CALL AND THE THREE SOTA

CONTINUOUS AUTHENTICATION SYSTEMS ON UCI HAR,
WISDM HARB AND OUR DATASET IN TERMS OF ACCURACY (%) AND

EER (%).

Dataset System ACC EER

UCI HAR

GMM-UBM - 16.50
LSTMAuth-S 90.10 8.80
LSTMAuth-U 65.40 20.00

CALL 96.43 4.28

WISDM HARB

1D-ResNet-SE 84.77 16.05
LSTMAuth-S 84.40 9.95
LSTMAuth-U 75.50 22.60

CALL 95.24 4.76

Our Dataset
LSTMAuth-S 89.40 13.40
LSTMAuth-U 76.00 25.00

CALL 96.92 3.86

Moreover, for each dataset, CALL is trained solely using data
from one user as the legitimate user and is tested utilizing
the remaining users’ data as unseen imposter’s samples, as
shown in Section V-A3. In contrast, other supervised systems
leverage a substantially larger volume of users’ data for
training, which demonstrates that CALL achieves superior
performance despite being trained with a smaller dataset. In
particular, we also observe that the average accuracy of 1D-
ResNet-SE (84.77%) slightly surpasses that of LSTMAuth-
S (84.40%), although LSTMAUth-S has a greater number of
training samples after data augmentation than 1D-ResNet-SE
without any data augmentation.

C. Ablation Study

1) Effect of the Shuffle Operation: We remove the shuffle
module from SLRT while keeping the other components

0 250 500 750 1000 1250 1500 1750 2000
t/ms

0

2

S(
t)

Sequential Diagram
S

0 250 500 750 1000 1250 1500 1750 2000
t/ms

0

2

S_
iff

t(t
)

IFFT Diagram
S_ifft

0 10 20 30 40 50
Frequency

0.00

0.25

Po
we

r

FFT Frequency Diagram
Frequency

(a) Original data of a legitimate user.

(b) Reordered data of a legitimate user.
Fig. 8. Comparison of an original data sequence and reordered data sequence
for one dimension within a time window on our dataset for a legitimate user.

unchanged. After training for 400 epochs, we compare the av-
erage performance of CALL without (w/o) the shuffle module
to CALL, and the results are listed in Table V. We observe that
CALL without shuffle module can quickly converge during
training on each dataset. However, its performance on the three
datasets is significantly worse than CALL, with lower accuracy
(58.57%, 63.10%, and 66.58%) and higher EERs (38.57%,
44.83%, and 42.52%). Further experiments reveal that CALL
without the shuffle model tends to learn fixed outputs since
labels for all the training samples are the same (a vector with
elements from 1/T to 1). This emphasizes the importance
of the shuffle operation in CALL to prevent the model from
learning meaningless patterns.

2) Effect of OC Loss: We remove the OC loss mentioned
in Eq. (13) while keeping the other loss terms unchanged.
We compare the average performance of CALL without OC
loss to CALL, and the results are presented in Table VI. We
observe that CALL without OC loss can converge quickly, but
its accuracy (90.00%, 89.29%, and 91.42%) and EERs (9.37%,
13.51%, and 10.91%) are not as good as CALL on the three
datasets. By observing the outputs of CALL without OC loss,
we further observation finds that CALL without OC loss learns

13

0 250 500 750 1000 1250 1500 1750 2000
t/ms

-1
0
1

S(
t)

Sequential Diagram

S

0 250 500 750 1000 1250 1500 1750 2000
t/ms

-1
0
1

S_
iff
t(t

)

IFFT Diagram

S_ifft

0 10 20 30 40 50
Frequency

0.00

0.25

Po
we

r

FFT Frequency Diagram
Frequency

(a) Original data of an imposter.

(b) Reordered data of an imposter.
Fig. 9. Comparison of an original data sequence and reordered data sequence
for one dimension within a time window on our dataset for an imposter.

TABLE V
PERFORMANCE COMPARISON BETWEEN CALL WITHOUT (W/O) SHUFFLE
MODULE AND CALL ON UCI HAR, WISDM HARB AND OUR DATASET
IN TERMS OF AVERAGE ACCURACY (%), F1 Score (%), AND EER (%).

Dataset Version ACC F1 Score EER

UCI HAR w/o shuffle module 58.57 57.35 38.57
CALL 96.43 96.40 4.28

WISDM HARB w/o shuffle module 63.10 60.76 44.83
CALL 95.24 95.24 4.76

Our Dataset w/o shuffle module 66.58 65.34 42.52
CALL 96.92 96.88 3.86

to predict the overall order of the time series sample but fails
to accurately predict the order of data in specific local areas,
similar to the example in Table II. This experiment indicates
that OC loss is crucial for helping CALL learn the precise
overall and local order of time series data.

3) Effect of the Low-Rank Transformer: To thoroughly
investigate the effect of the low-rank Transformer on CALL,
we conduct three ablation experiments on three datasets for

TABLE VI
PERFORMANCE COMPARISON BETWEEN CALL WITHOUT (W/O) OC LOSS

AND CALL ON UCI HAR, WISDM HARB, AND OUR DATASET IN
TERMS OF ACCURACY (%), F1 Score (%) AND EER (%).

Dataset Version ACC F1 Score EER

UCI HAR w/o OC loss 90.00 89.86 9.37
CALL 96.43 96.40 4.28

WISDM HARB w/o OC loss 89.29 89.16 13.51
CALL 95.24 95.24 4.76

Our Dataset w/o OC loss 91.42 91.31 10.91
CALL 96.92 96.88 3.86

comparison: 1) We remove the SLRT module from CALL,
resulting in CALL with (w/) the pure-CNN autoencoder
that exclusively captures spatial features expressed by Eq.
(3); 2) We replace the low-rank Transformer in SLRT with
the traditional Transformer [35], resulting in CALL with
traditional Transformer; 3) we replace the low-rank Trans-
former in SLRT with RNN, resulting in CALL with RNN.
We compare the average performance among CALL with
pure-CNN autoencoder, with the traditional Transformer, and
with RNN, and the results are presented in Table VII. We
observe that CALL generally exhibits the best performance
on UCI HAR and WISDM HARB datasets, outperforming
our dataset, where CALL with traditional Transformer shows
the best performance. Specifically, CALL with pure-CNN au-
toencoder significantly degrades, with low accuracy (70.77%,
74.17%, and 78.17%) and high EERs (29.23%, 25.83%, and
20.67%) on three datasets. CALL with RNN cannot work
well on all the datasets since it fails to capture accurate
temporal relations of long-term multivariate time series data.
CALL (with the low-rank-Transformer) achieves the best
performance on UCI HAR and WISDM HARB, which are
small datasets. In contrast, CALL with traditional Transformer
obtains the highest accuracy of 97.17% and the lowest EER
of 3.27% on our dataset with 2400 training samples for each
user. However, the low-rank Transformer in CALL, which
has fewer parameters, is proved to perform well on datasets
with a small volume of training samples. In comparison, the
traditional Transformer, which has more parameters, performs
better on the relatively large dataset. In real scenarios, the low-
rank Transformer can be applied in the SLRT module with
limited training data, while the traditional Transformer can be
utilized with the large volume of training data.

4) Effect of the Dataset Size: We divide the training sets
into 25%, 50%, 75%, and 100% subsets of the training
data used in Section V-A3 for all datasets. For each dataset,
The average performance of CALL on each subset is pre-
sented in Table VIII. We observe that CALL can achieve
high performance on all three datasets, even when the data
size is only 50% in 89.29%, 91.67%, and 32.33% accuracy,
respectively. Furthermore, it reaches 92.86%, 94.05%, and
95.58% accuracy, and 7.69%, 7.69%, and 5.08% EERs on
three datasets with 75% training samples, which is closely
matches the performance with 100% training samples. Thus,

14

TABLE VII
PERFORMANCE COMPARISON AMONG CALL WITH (W/) PURE-CNN

AUTOENCODE, WITH TRADITIONAL-TRANSFORMER, WITH RNN, AND
CALL ON UCI HAR, WISDM HARB AND OUR DATASET IN TERMS OF

AVERAGE ACCURACY (%), F1 Score (%) AND EER (%).

Dataset Version ACC F1 Score EER

UCI HAR

w/ pure-CNN autoencoder 70.77 71.64 29.23
w/ traditional Transformer 93.57 93.53 6.06

w/ RNN 76.43 75.56 24.29
CALL 96.43 96.40 4.28

WISDM HARB

w/ pure-CNN autoencoder 74.17 74.80 25.83
w/ traditional Transformer 92.86 92.68 7.69

w/ RNN 72.62 71.60 28.57
CALL 95.24 95.24 4.76

Our Dataset

w/ pure-CNN autoencoder 78.17 77.91 20.67
w/ traditional Transformer 97.17 97.15 3.27

w/ RNN 80.25 79.93 19.83
CALL 96.92 96.88 3.86

TABLE VIII
CALL PERFORMANCE COMPARISON AMONG DIFFERENT DATASET SIZES

ON UCI HAR, WISDM HARB, AND OUR DATASET IN TERMS OF
AVERAGE ACCURACY(%), F1 Score (%) AND EER (%).

Dataset Percentage (%) ACC F1 Score EER

UCI HAR

25 80.00 79.41 21.43
50 89.29 89.21 11.11
75 92.86 92.75 7.69
100 96.43 96.40 4.82

WISDM HARB

25 73.81 73.17 23.81
50 91.67 91.36 10.53
75 94.05 93.98 7.69
100 95.24 95.24 4.76

Our Dataset

25 85.58 85.40 16.50
50 92.33 92.23 8.50
75 95.58 95.54 5.08
100 96.92 96.88 3.86

despite shrinking the training dataset size to 50%, the random
shuffle operation in the feature space still can effectively
disorder the features, treating them as different sequences
in different training epochs, resulting in theoretically infinite
training samples, especially when the data volume is limited.
This experiment validates that data augmentation methods are
not necessary for CALL.

5) Effect of the sensor numbers: We study the impact of
varying numbers of sensors in each dataset on CALL. For each
dataset, considering a specified number of sensors (ranging
from one to all sensors), there are several possible sensor
combinations. We calculate the average performance across all
these sensor combinations for each given sensor number. The
results are summarized in Table IX. The table illustrates that
CALL is sensitive to the number of sensors, with a decrease in
performance as the number of sensors is reduced. For instance,
with only one sensor, CALL receives 55.00%, 63.10%, and
60.17% accuracy, and 44.29%, 38.10%, and 39.33% EERs,
on the three datasets, respectively. Therefore, we conclude
that the number of sensors significantly influences CALL, due
to the average mutual information. Assuming n sensor sets

Ω = {S1, . . . , Sn} and one ranking set T = {t1, . . . , tm}, the
information entropy of T for a user under the measurement of
one sensor can be formalized as Eq. (18):

H(T |Si) =
∑

t∼T,si∼Si

p(t, si)log(
1

p(t|si)
), (18)

where Si ∈ Ω. We define I(T ;Si) as the average mutual
information between T and Si. Eq. (18) can be modified as
Eq. (19):

H(T |Si) = H(T)− I(T ;Si)

= H(T)−
∑

t∼T,si∼Si

p(t, si)log(
p(t, si)

p(t)p(si)
), (19)

where H(T) denotes the information entropy of T . We know
I(T ;Si) ≥ 0, and the equal sign holds if and only if T and
Si are independent. As a result, the uncertainty (information
entropy) is reduced when introducing the measurement of
Si, which allows CALL to predict the order of time series
based on the sensor values. However, in real scenarios, the
uncertainty of T remains large based solely on one sensor. For
example, when a mobile device is used for a certain period, the
same value measured by the accelerometer is likely to appear
many times during this period uncertainly, which degrades
CALL’s ability to predict the accurate occurrence time only
based on the measured values. Thus, with the same methods
by Eq. (19), we use more sensors at each time step to reduce
the uncertainty of T , as Eq. (20):

H(T |S1, S2, . . . , Sn) = H(T |S1, S2, . . . , Sn−1)

− I(T ;Sn|S1, S2, . . . , Sn−1)

= H(T |S1, S2, . . . , Sn−2)− I(T ;Sn−1|S1, S2, . . . , Sn−2)

− I(T ;Sn|S1, S2, . . . , Sn−1)

· · ·
= H(T |S1)− I(T ;S2|S1)− · · · − I(T ;Sn|S1, S2, . . . , Sn−1)

= H(T)− I(T ;S1)− · · · − I(T ;Sn|S1, S2, . . . , Sn−1),
(20)

Due to the nonnegativity of I(·; ·), we can observe that
H(T) ≥ H(T |S1) ≥ · · · ≥ H(T |S1, S2, . . . , Sn). According
to Table IX, when the sensor number increases to 2 or
more, the uncertainty of the ranking for time series data is
significantly reduced, enabling CALL to precisely predict the
order based on the measurements.

D. Complexity Analysis

In this section, we analyze the complexity of CALL by
comparing it to CALL with the traditional Transformer in
terms of floating-point operations per second (FLOPS), pa-
rameters, and real-world time cost using the “thop.profile”
and “time” Python library on the three datasets, and the
results are presented in Table X. We observe that CALL
has significantly fewer FLOPS, i.e., 1749.60K, 586.80K, and
3661.20K on UCI HAR, WISDM HARB, and our dataset,
and fewer parameters, i.e., 8.95K, 3.17K, and 18.57K on the
three datasets, respectively, which indicate that CALL requires
less memory. In addition, for the real-world time cost, we

15

TABLE IX
PERFORMANCE OF CALL WITH DIFFERENT NUMBER OF SENSORS ON

UCI HAR, WISDM HARB AND OUR DATASET IN TERMS OF ACCURACY
(%), F1 Score (%) AND EER (%).

Dataset Sensor Number ACC F1 Score EER

UCI HAR 1 55.00 55.32 44.29
2 96.43 96.40 4.28

WISDM HARB 1 63.10 63.53 38.10
2 95.24 95.24 4.76

Our Dataset
1 60.17 59.97 39.33
2 90.00 89.76 10.33
3 96.92 96.88 3.86

TABLE X
COMPLEXITY COMPARISON BETWEEN CALL WITH (W/) TRADITIONAL
TRANSFORMER AND CALL ON UCI HAR, WISDM HARB, AND OUR
DATASET IN TERMS OF FLOPS (K), PARAMETERS (K), AVERAGE TIME

COST BY MODEL (MS) AND AVERAGE TIME COST BY FFT (MS).

Dataset Version FLOPS Parameter Model Time FFT Time

UCI HAR w/ traditional Transformer 2171.88 11.10 92.27 1.25
CALL 1749.60 8.95 60.30 1.26

WISDM HARB w/ traditional Transformer 752.06 4.25 49.28 1.41
CALL 586.80 3.17 37.47 1.43

Our Dataset
w/ traditional Transformer 4256.02 21.81 157.30 2.04

CALL 3661.20 18.57 107.83 1.92

perform the calculation on CPU, testing 10 samples for each
dataset, and repeating the testing 10 times to obtain the average
time. We find that CALL takes a lower average time than
CALL with the traditional transformer on all datasets, i.e.,
60.30ms, 37.47ms, and 107.83ms, which indicates CALL
is more suitable for deployment on mobile devices than the
CALL with traditional Transformer.

VI. CONCLUSION

This work proposes a lightweight unsupervised sensor-based
continuous authentication system using a pure-CNN autoen-
coder and a designed low-rank Transformer with a learning-to-
rank policy, namely CALL, for achieving end-to-end authenti-
cation. CALL uses the autoencoder and low-rank Transformer
to capture spatial and temporal features from time series data,
achieving the best authentication performance through the
reconstruction error calculation, SR and DFW algorithms in
terms of 96.43%, 95.24%, and 96.92% accuracy, and 4.28%,
4.76%, and 3.86% EERs on UCI HAR, WISDM HARB, and
our dataset, respectively, comparing to SOTA systems. The
experiments further demonstrate that the low-rank Transformer
enables CALL to maintain high performance with fewer
parameters, reduced FLOPS, and decreased average time cost,
making it suitable for mobile devices. Finally, a mathematical
proof is provided to explain why CALL exhibits sensitivity to
the number of sensors.

In comparison with recent supervised systems trained on
extensive datasets, there is still room for improvement in the
accuracy and EERs of CALL. This is because we currently

employ only one layer of low-rank Transformer and a feed-
forward network within the Transformer with 72 dimensions.
Furthermore, CALL needs to enhance both convenience and
security to offer real-time mobile device authentication. In
addition, recent studies suggest that incorporating statistical
features can enhance the system’s robustness [43]. To address
these concerns, our future work will focus on enhancing each
module’s backbone to reduce inference latency, optimizing
hyperparameters, improving the performance of the unsu-
pervised authentication system, and exploring the integration
of manual features to promote robustness. We aim to keep
the performance of unsupervised models competitive with
recent large models. Moreover, our efforts will extend beyond
preventing forgery attacks by aiming to authenticate users at
each time step, thus achieving higher real-time properties.

REFERENCES

[1] A. J. Aviv, K. Gibson, E. Mossop, M. Blaze, and J. M.
Smith, “Smudge attacks on smartphone touch screens,”
in 4th USENIX Workshop on Offensive Technologies
(WOOT 10), 2010.

[2] S. Wiedenbeck, J. Waters, L. Sobrado, and J.-C. Birget,
“Design and evaluation of a shoulder-surfing resistant
graphical password scheme,” in Proceedings of the work-
ing conference on Advanced visual interfaces, 2006, pp.
177–184.

[3] M. Zhou, Q. Wang, J. Yang, Q. Li, F. Xiao, Z. Wang, and
X. Chen, “Patternlistener: Cracking android pattern lock
using acoustic signals,” in Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications
Security, 2018, pp. 1775–1787.

[4] D. Cheng, L. Zhang, C. Bu, H. Wu, and A. Song,
“Learning hierarchical time series data augmentation
invariances via contrastive supervision for human activity
recognition,” Knowledge-Based Systems, vol. 276, p.
110789, 2023.

[5] D. Cheng, L. Zhang, C. Bu, X. Wang, H. Wu, and
A. Song, “Protohar: Prototype guided personalized fed-
erated learning for human activity recognition,” IEEE
Journal of Biomedical and Health Informatics, 2023.

[6] S. Xu, L. Zhang, Y. Tang, C. Han, H. Wu, and A. Song,
“Channel attention for sensor-based activity recognition:
Embedding features into all frequencies in dct domain,”
IEEE Transactions on Knowledge and Data Engineering,
2023.

[7] C. Bu, L. Zhang, H. Cui, G. Yang, and H. Wu, “Dynamic
inference via localizing semantic intervals in sensor data
for budget-tunable activity recognition,” IEEE Transac-
tions on Industrial Informatics, 2023.

[8] D. M. Shila and K. Srivastava, “Castra: Seamless and
unobtrusive authentication of users to diverse mobile
services,” IEEE Internet of Things Journal, vol. 5, no. 5,
pp. 4042–4057, 2018.

[9] I. Lamiche, G. Bin, Y. Jing, Z. Yu, and A. Hadid,
“A continuous smartphone authentication method based
on gait patterns and keystroke dynamics,” Journal of
Ambient Intelligence and Humanized Computing, vol. 10,
pp. 4417–4430, 2019.

16

[10] S. Mondal and P. Bours, “A continuous combination
of security & forensics for mobile devices,” Journal of
information security and applications, vol. 40, pp. 63–77,
2018.

[11] R. Kumar, V. V. Phoha, and A. Serwadda, “Continuous
authentication of smartphone users by fusing typing,
swiping, and phone movement patterns,” in 2016 IEEE
8th international conference on biometrics theory, appli-
cations and systems (BTAS). IEEE, 2016, pp. 1–8.

[12] T.-Y. Chang, C.-J. Tsai, J.-Y. Yeh, C.-C. Peng, and P.-
H. Chen, “New soft biometrics for limited resource in
keystroke dynamics authentication,” Multimedia Tools
and Applications, vol. 79, pp. 23 295–23 324, 2020.

[13] J. Kim and P. Kang, “Freely typed keystroke dynamics-
based user authentication for mobile devices based on
heterogeneous features,” Pattern Recognition, vol. 108,
p. 107556, 2020.

[14] T. Feng, J. Yang, Z. Yan, E. M. Tapia, and W. Shi, “Tips:
Context-aware implicit user identification using touch
screen in uncontrolled environments,” in Proceedings of
the 15th workshop on mobile computing systems and
applications, 2014, pp. 1–6.

[15] M. Frank, R. Biedert, E. Ma, I. Martinovic, and D. Song,
“Touchalytics: On the applicability of touchscreen input
as a behavioral biometric for continuous authentication,”
IEEE transactions on information forensics and security,
vol. 8, no. 1, pp. 136–148, 2012.

[16] S. Keykhaie and S. Pierre, “Lightweight and secure
face-based active authentication for mobile users,” IEEE
Transactions on Mobile Computing, vol. 22, no. 3, pp.
1551–1565, 2023.

[17] Y. Yang, X. Huang, J. Li, and J. S. Sun, “Bubblemap:
Privilege mapping for behavior-based implicit authentica-
tion systems,” IEEE Transactions on Mobile Computing,
vol. 22, no. 8, pp. 4548–4562, 2023.

[18] W. H. Khoh, Y. H. Pang, A. B. J. Teoh, and S. Y. Ooi,
“In-air hand gesture signature using transfer learning and
its forgery attack,” Applied Soft Computing, vol. 113, p.
108033, 2021.

[19] G. Dahia, L. Jesus, and M. Pamplona Segundo, “Con-
tinuous authentication using biometrics: An advanced
review,” Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery, vol. 10, no. 4, p. e1365, 2020.

[20] Y. Li, L. Liu, S. Deng, H. Qin, M. A. El-Yacoubi,
and G. Zhou, “Memory-augmented autoencoder based
continuous authentication on smartphones with condi-
tional transformer gans,” IEEE Transactions on Mobile
Computing, 2023.

[21] Y. Li, L. Liu, H. Qin, S. Deng, M. A. El-Yacoubi, and
G. Zhou, “Adaptive deep feature fusion for continuous
authentication with data augmentation,” IEEE Transac-
tions on Mobile Computing, vol. 22, no. 10, pp. 5690–
5705, 2023.

[22] Y. Li, P. Tao, S. Deng, and G. Zhou, “Deffusion: Cnn-
based continuous authentication using deep feature fu-
sion,” ACM Transactions on Sensor Networks (TOSN),
vol. 18, no. 2, pp. 1–20, 2021.

[23] G. Giorgi, A. Saracino, and F. Martinelli, “Using re-

current neural networks for continuous authentication
through gait analysis,” Pattern Recognition Letters, vol.
147, pp. 157–163, 2021.

[24] S. Mekruksavanich and A. Jitpattanakul, “Deep residual
network for smartwatch-based user identification through
complex hand movements,” Sensors, vol. 22, no. 8, p.
3094, 2022.

[25] Y. Cao, F. Li, Q. Zhang, S. Yang, and Y. Wang, “Towards
nonintrusive and secure mobile two-factor authentication
on wearables,” IEEE Transactions on Mobile Computing,
vol. 22, no. 5, pp. 3046–3061, 2023.

[26] S. Ahmad, S. Mishra, F. J. Zareen, and S. Jabin, “Sensor-
enabled biometric signature-based authentication method
for smartphone users,” International Journal of Biomet-
rics, vol. 15, no. 2, pp. 212–232, 2023.

[27] F. H. Al-Naji and R. Zagrouba, “A survey on continuous
authentication methods in internet of things environ-
ment,” Computer Communications, vol. 163, pp. 109–
133, 2020.

[28] M. Abuhamad, A. Abusnaina, D. Nyang, and D. Mo-
haisen, “Sensor-based continuous authentication of
smartphones’ users using behavioral biometrics: A con-
temporary survey,” IEEE Internet of Things Journal,
vol. 8, no. 1, pp. 65–84, 2020.

[29] R. Spolaor, Q. Li, M. Monaro, M. Conti, L. Gamberini,
and G. Sartori, “Biometric authentication methods on
smartphones: A survey.” PsychNology Journal, vol. 14,
no. 2, 2016.

[30] I. Stylios, S. Kokolakis, O. Thanou, and S. Chatzis, “Be-
havioral biometrics & continuous user authentication on
mobile devices: A survey,” Information Fusion, vol. 66,
pp. 76–99, 2021.

[31] M. Hu, K. Zhang, R. You, and B. Tu, “Authconformer:
Sensor-based continuous authentication of smartphone
users using a convolutional transformer,” Computers &
Security, vol. 127, p. 103122, 2023.

[32] M. Abuhamad, T. Abuhmed, D. Mohaisen, and
D. Nyang, “Autosen: Deep-learning-based implicit con-
tinuous authentication using smartphone sensors,” IEEE
Internet of Things Journal, vol. 7, no. 6, pp. 5008–5020,
2020.

[33] P. Delgado-Santos, R. Tolosana, R. Guest, R. Vera-
Rodriguez, F. Deravi, and A. Morales, “Gaitprivacyon:
Privacy-preserving mobile gait biometrics using unsuper-
vised learning,” Pattern Recognition Letters, vol. 161, pp.
30–37, 2022.

[34] H. Sakoe and S. Chiba, “Dynamic programming algo-
rithm optimization for spoken word recognition,” IEEE
transactions on acoustics, speech, and signal processing,
vol. 26, no. 1, pp. 43–49, 1978.

[35] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin,
“Attention is all you need,” Advances in neural informa-
tion processing systems, vol. 30, 2017.

[36] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova,
“Bert: Pre-training of deep bidirectional transformers
for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

17

[37] G. Lample and A. Conneau, “Cross-lingual language
model pretraining,” arXiv preprint arXiv:1901.07291,
2019.

[38] G. I. Winata, S. Cahyawijaya, Z. Lin, Z. Liu, and P. Fung,
“Lightweight and efficient end-to-end speech recognition
using low-rank transformer,” in ICASSP 2020-2020 IEEE
International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP). IEEE, 2020, pp. 6144–6148.

[39] D. Anguita, A. Ghio, L. Oneto, X. Parra, J. L. Reyes-
Ortiz et al., “A public domain dataset for human activity
recognition using smartphones.” in Esann, vol. 3, 2013,
p. 3.

[40] G. M. Weiss, K. Yoneda, and T. Hayajneh, “Smartphone
and smartwatch-based biometrics using activities of daily
living,” IEEE Access, vol. 7, pp. 133 190–133 202, 2019.

[41] S. Mekruksavanich and A. Jitpattanakul, “Deep learning
approaches for continuous authentication based on ac-
tivity patterns using mobile sensing,” Sensors, vol. 21,
no. 22, p. 7519, 2021.

[42] R. San-Segundo, R. Cordoba, J. Ferreiros, and L. F.
D’Haro-Enrı́quez, “Frequency features and gmm-ubm
approach for gait-based person identification using smart-
phone inertial signals,” Pattern Recognition Letters,
vol. 73, pp. 60–67, 2016.

[43] G. Stragapede, R. Vera-Rodriguez, R. Tolosana,
A. Morales, J. Fierrez, J. Ortega-Garcia, S. Rasnayaka,
S. Seneviratne, V. Dissanayake, J. Liebers et al.,
“Ijcb 2022 mobile behavioral biometrics competition
(mobileb2c),” in 2022 IEEE International Joint
Conference on Biometrics (IJCB). IEEE, 2022, pp.
1–7.

