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Abstract—In computer networking, network traffic refers to
the amount of data transmitted in the form of packets between
internetworked computers or Cyber-Physical Systems. Monitor-
ing and analyzing network traffic is crucial for ensuring the
performance, security, and reliability of a network. However,
a significant challenge in network traffic analysis is to process
diverse data packets including both ciphertext and plaintext.
While many methods have been adopted to analyze network
traffic, they often rely on different datasets for performance
evaluation. This inconsistency results in substantial manual data
processing efforts and unfair comparisons. Moreover, some data
processing methods may cause data leakage due to improper sep-
aration of training and testing data. To address these issues, we
introduce the NetBench, a large-scale and comprehensive bench-
mark dataset for assessing machine learning models, especially
foundation models, in both network traffic classification and
generation tasks. NetBench is built upon seven publicly available
datasets and encompasses a broad spectrum of 20 tasks, including
15 classification tasks and 5 generation tasks. Furthermore,
we evaluate eight State-Of-The-Art (SOTA) classification models
(including two foundation models) and two generative models
using our benchmark. The results show that foundation models
significantly outperform the traditional deep learning methods
in traffic classification. We believe NetBench will facilitate fair
comparisons among various approaches and advance the devel-
opment of foundation models for network traffic. Our benchmark
is available at https://github.com/WM-JayLab/NetBench.

Index Terms—Benchmark Dataset, Network Traffic, Founda-
tion Models

I. INTRODUCTION

In the domain of computer networking, network traffic [1]
is the amount of data transmitted in the form of packets
between interconnected computers or systems. Generally, a
network packet is composed of two parts: a header containing
meta features and a commonly encrypted payload, as shown
in Fig. 1. Analyzing network traffic is critical for enhancing
network security and management. However, it is challenging
to analyze network traffic due to the diversity of packet types,
such as TCP and UDP, as well as the presence of both
encrypted and unencrypted data.

Over the past decades, machine learning-based methods
have been extensively developed for network traffic analysis.
Earlier studies [8]–[12] primarily assessed the proposed meth-
ods on a single dataset encompassing at most 2 classification

∗
Both authors contributed equally to this research.

Network Traffic Data

Network Traffic Data
Header
<IP  version=4 ihl=5 tos=0x0 len=1390 id=39113 flags=DF 
frag=0 ttl=64 proto=tcp chksum=0x4b4b src=131.202.240.150 
dst=217.23.3.253 |<TCP sport=34160 dport=9001 
seq=899105149 ack=2465113572 dataofs=8 reserved=0 flags=A 
window=5989 chksum=0x56d6 urgptr=0 options=[('NOP', 
None), ('NOP', None), ('Timestamp', (15941960, 1118094192))] |
<Raw  load='\x17\x03\x03\x02\x1a\\xa0U\\xe9\\xdar\x1al\x05 
\x03\\x03\\xfc\\xc1/\n\x17LV\\xbbv\\xf7\\xceH\\xf5p\\x9eW\\xd5
\\xff7t\\x9d\\xba[\\xa3\t\...' |>>
Payload (Encrypted)

Mixture of Plaintext Header and Encrypted Payload

TCP

Fig. 1. The format of network traffic data, which are the mixture of plaintext
header and encrypted payload. This mixture makes it hard to directly process
with text tokenizers for model training.

tasks. Despite achieving notable performance, these studies
suffer from disparate data processing pipelines and insuffi-
ciently comprehensive evaluations. To address this issue, some
recent works [13]–[15] have evaluated performance across
multiple datasets and a broader range of classification tasks.
For instance, the foundation model ET-BERT [14] was pre-
trained on 7 datasets to learn intrinsic representations and
then fine-tuned for 5 downstream tasks. However, the data
processing techniques in existing works are often customized
for themselves. Moreover, some studies randomly split the
extracted packets from the same flow into training and testing
dataset for packet-level evaluation, which may cause data leak-
age since the packets from same flow are strongly correlated.
Additionally, certain research practices [16], [17] only focused
on traffic generation for network simulation rather than traf-
fic classification. In summary, there is a lack of evaluation
against a unified and comprehensive network benchmark that
encompasses both network traffic classification and generation,
making it hard to fairly compare performance.

To address existing limitations, we propose NetBench,
a large-scale and comprehensive network traffic benchmark
covering 7 distinct datasets, featuring 15 classification tasks
and 5 generation tasks, as illustrated in Table I. For the clas-
sification benchmark, we construct 15 tasks across 7 datasets,
including ISCXVPN 2016 [2], ISCXTor 2016 [3], USTC-TFC
2016 [4], Cross-Platform [5] dataset containing both Android



TABLE I
THE STATISTICAL INFORMATION OF 7 DIFFERENT DATASETS, INCLUDING 15 TRAFFIC CLASSIFICATION TASKS AND 5 TRAFFIC GENERATION TASKS.

Dataset #Flow #Packet Task #Label

ISCXVPN 2016 [2] 311,390 1,040,354 1 - VPN Detection 2
2 - VPN Service Detection 6
3 - VPN Application Classification 17

ISCXTor 2016 [3] 55,523 1,163,495 4 - Tor Detection 2
5 - Tor Service Detection 7

USTC-TFC 2016 [4] 489,139 4,564,519 6 - Malware Detection 2
7 - Application Classification 20

Cross Platform (Android) 2020 [5] 66,346 1,358,292 8 - Application Classification 212
9 - Country Detection 3

Cross Platform (iOS) 2020 [5] 34,912 971,762 10 - Application Classification 196
11 - Country Detection 3

CIRA-CIC-DoHBrw 2020 [6] 831,497 32,962,034 12 - DoH Attack Detection 2
13 - DoH Query Method Classification 5

CIC IoT Dataset 2023 [7] 1,163,495 27,738,736 14 - IoT Attack Detection 2
15 - IoT Attack Method Detection 7

Consecutive Packets from above 7 datasets - 12,786,490
16 - Source IP Address Generation

-17 - Destination IP Address Generation
18 - Source Port Number Generation
19 - Destination Port Number Generation
20 - Packet Length Generation

Total 2,952,302 69,799,192 - -

and IOS applications, CIRA-CIC-DoHBrw 2020 [6], and CIC
IoT Dataset 2023 [7]. The specific tasks for each dataset
are outlined in table I. For the generation benchmark, we
devise five tasks tailored to essential header fields [16] at
the packet level, including IP addresses (Source/Destination),
port number (Source/Destination) and packet length over the
same 7 datasets above. This benchmark can help create valid
network packets for network simulation.

To prevent data leakage, we first split the original network
traffic data into training, validation, and testing sets, from
which we extract flows and packets. Then, we anonymize
sensitive header fields and employ a unified hexadecimal
encoding to standardize different data formats. Moreover, our
benchmark provides both flow-level and packet-level evalua-
tions for each dataset, accommodating various input types. To
the best of our knowledge, NetBench is the first network
traffic benchmark that covers a wide range of tasks through
a unified data processing method. Furthermore, we evaluate
eight SOTA models (including two foundation models, ET-
BERT [14] and YaTC [15]) on 15 classification tasks and two
generative models on 5 generation tasks using our benchmark.
We believe that our benchmark has laid a solid foundation for
evaluating network traffic models fairly, which will signifi-
cantly contribute to the development of foundation models for
network traffic.

In summary, the main contributions of this work are three-
fold:

• Comprehensive Network Traffic Benchmark. We first
create a large-scale and comprehensive network traffic
benchmark from 7 distinct datasets with 20 tasks. Our
benchmark offers diverse data types for foundation model
training and a wide range of downstream tasks for fair
evaluation in both network traffic classification and gen-
eration.

• Unified Data Processing. We introduce a uniform hex-
adecimal encoding method to process diverse network
traffic data with anonymization in sensitive header fields.
Our data processing method unifies data pre-processing,
data standardization, and data segmentation, which can
offer a fair evaluation opportunity and save human labor.

• Benchmarking SOTA Methods. We compare the perfor-
mance of eight SOTA classifiers (including two founda-
tion models) and two generative models using our bench-
mark. The evaluation results demonstrate the superiority
of foundation models over other approaches in traffic
classification.

II. RELATED WORK

Evaluation on Single Dataset. Most earlier machine
learning-based studies have been evaluated using a single
dataset focused on no more than two tasks. For example,
Fs-net [8] assessed its performance on a campus network
dataset [9] with 18 classes by extracting statistical features like
packet length as model input. Similarly, BiLSTM ATTN [10]
implemented traffic segmentation and unwanted informa-
tion removal for data processing before evaluation on the
ISCXVPN-detection dataset [2]. DataNet [11] employed bal-
anced subsets, byte vectorization, and normalization in its
preprocessing steps, but its testing was confined to the ISCX
VPN-application task. In addition, DeepPacket [12] built upon
earlier efforts [10], [11] to eliminate irrelevant packets for
evaluation on the ISCXVPN dataset. STAN [17] applied
normalization and one-hot encoding for pre-processing before
it was evaluated on a selected subset from UGR’16 [18]
dataset across 2 generation tasks. While these approaches have
shown promising results, their evaluations were restricted to
single dataset and a limited range of tasks. Moreover, the
variance in their data processing techniques could result in
biased comparisons.



TABLE II
COMPARISON OF NETWORK TRAFFIC METHODS IN TERMS OF DATASET

UTILIZATION AND TASK DIVERSITY. OUR BENCHMARK ENCOMPASSES A
TOTAL OF 20 TASKS ACROSS 7 DATASETS.

Method #Employed #Dataset Size #Covered
Dataset(s) (flows) Task(s)

Fs-net 1 956K 1
BiLSTM ATTN 1 47K 2

Datanet 1 206K 1
DeepPacket 1 206K 2

STAN 1 348K 2
TSCRNN 3 420K 3

YaTC 5 360K 4
ET-Bert 7 376K 5

NetShare 6 600K 13

NetBench 7 2952K 20

Evaluation on Multiple datasets. To achieve a more compre-
hensive evaluation, recent works have assessed their models
on more datasets covering a variety of tasks. For instance,
TSCRNN [13] was evaluated on 3 public datasets follow-
ing the pre-processing pipelines established in [10], [11].
More recently, Transformer-based foundation models like ET-
BERT [14] pre-trained on 6 public and 1 collected dataset to
learn network traffic representations and then fine-tuned for 5
classification tasks. However, the construction of their packet-
level evaluation datasets through random sampling raises the
potential issue of data leakage, as highly correlated packets
from the same flow could appear in both the training and
testing datasets. Additionally, the foundation model YaTC [15]
pre-trained on 4 datasets for better representation and fine-
tuned on 5 public datasets to test its generalization ability.
Nevertheless, it faces a similar risk of data leakage for packet-
level evaluation due to its use of a data processing method-
ology akin to ET-BERT. Meanwhile, NetShare [16] evaluated
its generative performance across six datasets, although it is
not designed for traffic classification tasks.

In summary, while current approaches have been assessed
across various datasets and tasks, the comprehensiveness and
fairness of these evaluations remain questionable due to the
variance in data processing approaches. To our best knowl-
edge, there has yet to be an establishment of a large-scale
and comprehensive benchmark that enables a fair comparison
across different models.

III. NETBENCH

In this section, we create a large-scale and comprehensive
benchmark dataset named NetBench, designed to standard-
ize the evaluation of network traffic analysis models. Our
benchmark contains 7 datasets with 20 tasks, including 15
classification tasks and 5 generation tasks.

A. Data Preparation

To create a large-scale and comprehensive benchmark,
we first collect raw data samples from 7 publicly available
datasets, as detailed in table I. Then, our next step is to convert
them into a standardized format as model input. Fig. 2 shows

the proposed pipeline of data preparation, which consists of
three steps: Data Pre-Processing, Data Standardization, and
Data Segmentation.

• Data Pre-Processing. Network traffic data encompasses
flows of network packets containing privacy-sensitive in-
formation. As network traffic packets are captured and
saved in Packet Capture (PCAP) files, we firstly segments
PCAP files into distinct set for training, validation, and
testing. This strategy ensures that high-correlated packets
from the same flow will not be simultaneously present
in both training and testing data. This effectively reduces
the risk of data leakage. Subsequently, we extract flows
containing multiple packets from these PCAP files accord-
ing to distinct combinations of IP addresses, port numbers
and protocols [19]. To protect data privacy, we further
anonymize each packet by masking the source/destination
IP addresses and port numbers (replaced with 0). This not
only preserves data integrity but also protects data privacy.

• Data Standardization. Since data packets include both
plaintext and ciphertext, we need to convert anonymized
flows into a hexadecimal format, thereby unifying both
header and payloads’ formats and reducing the complex-
ity to process network traffic data. This standardization
offers a fair and uniform basis for model comparison,
benchmarking more accurately among different tasks in
network traffic classification and generation. Following the
same methodology in [14], we employ the WordPiece
algorithm to segment the hexadecimal data into 4-digit
blocks, incorporating specific symbols (</s> for sequence
ends, <head> for header separation, and <pkt> for
packet demarcation) to standardize the dataset format.

• Data Segmentation. To capture the underlying character-
istics of network traffic, we offer evaluation on each dataset
at both flow level and packet level. Flow-level data is ideal
for high-level analysis, allowing for the identification of
trends, such as increasing or decreasing volumes of data
over time, shifts in the types of traffic, and overall patterns
of network use. Conversely, packet-level data enables a de-
tailed examination of packet content and specific network
traffic patterns. In addition to classification, we extract IP
addresses, port numbers, and packet length for packet-level
data as additional labels for generation tasks. By enabling
evaluation at both levels, we can comprehensively evaluate
the performance of different models in both classification
and generation tasks.

B. Tasks in NetBench

Utilizing the described pipeline on seven collected traffic
datasets, we construct a benchmark dataset for network traffic
called NetBench. This dataset encompasses a total of 20
downstream tasks, including 15 traffic classification and 5
traffic generation tasks. Table I provides a detailed summary
of NetBench. To our best knowledge, NetBench is the
largest and most comprehensive benchmark in network traffic
domain. It offers significant benefits for the development



Data Process

Network Traffic PCAP Data

Flow Extraction

Anonymize

Hexadecimal

Tokenization

Data Standardization

Data Segmentation

Flow-Level

Input: 4500 0028 … <head> 0000 db83 … <pkt> 4500 
0028 … <head> 0000 89a7 … <pkt> 4500 0028 … <head> 
0000 8b8f … <pkt> </s>
Detection Label: non-VPN
Service Label: Chat
Application Label: Skype

Packet-Level
Input: 4500 0028 … <head> 
0000 db83 … <pkt> </s>
Detection Label: non-VPN
Service Label: Chat
Application Label: Skype
Source IP: 131.202.240.150
Destination IP: 
217.23.3.253
Source Port: 34160
Destination Port: 9001
Packet Length: 1390

Input: 4500 0028 … <head> 
0000 89a7 … <pkt> </s>
Detection Label: non-VPN
Service Label: Chat
Application Label: Skype
Source IP: 131.202.240.87
Destination IP: 
121.171.102.90
Source Port: 61009
Destination Port: 28979
Packet Length: 134

…

…

Data Pre-Processing

Header
<IP  version=4 ihl=5 tos=0x0 len=134 id=8194 flags= frag=0 
ttl=128 proto=udp chksum=0xc63d src=131.202.240.87 
dst=121.171.102.90 |<UDP sport=61009 dport=28979 len=114 
chksum=0x47ca |
<Raw  load='d1:ad2:id20:\\xe4YK\\x99L\\x8e$\x01\\x82\\xe5} 
\\xe4\\xc1\x1e\\xdb\x12Y4\\x8b9:info_hash20:\\x92\\xd8̉\x05\x0
c\\xf4\x1e/\\xf9\̩...' |>>
Payload (Encrypted)

Header
<IP  version=4 ihl=5 tos=0x0 len=1390 id=39113 flags=DF 
frag=0 ttl=64 proto=tcp chksum=0x4b4b src=131.202.240.150 
dst=217.23.3.253 |<TCP sport=34160 dport=9001 
seq=899105149 ack=2465113572 dataofs=8 reserved=0 flags=A 
window=5989 chksum=0x56d6 urgptr=0 options=[('NOP', 
None), ('NOP', None), ('Timestamp', (15941960, 1118094192))] |
<Raw  load='\x17\x03\x03\x02\x1a\\xa0U\\xe9\\xdar\x1al\x05 
\x03\\x03\\xfc\\xc1/\n\x17LV\\xbbv\\xf7\\xceH\\xf5p\\x9eW\\xd5
\\xff7t\\x9d\\xba[\\xa3\t\...' |>>
Payload (Encrypted)

TCP

UDP

Flow

Packet

Packet
…

…
Fig. 2. The overall pipeline of data preparation, consisting of three parts: Data Pre-Processing, Data Standardization, and Data Segmentation. Firstly, we
convert flows extracted from network traffic PCAP files into a hexadecimal format. Then, the WordPiece algorithm is employed to segment the hexadecimal
data into 4-digit blocks, incorporating specific symbols (</s> for sequence ends, <head> for header separation, and <pkt> for packet demarcation). Lastly,
we create two different types of dataset based on flow level and packet level.

of foundational models and enables fair assessment of their
performance.

To better understand different tasks, we give two represen-
tative examples about traffic classification and generation as
follows.
Classification Tasks: We utilize the ISCXVPN 2016 [2]
dataset as an illustrative example. This dataset showcases the
emulation of real-world internet behaviors by setting up user
accounts to interact with each other on popular applications in
VPN-routed or non-VPN scenarios. It involves capturing both
VPN-routed and non-VPN internet sessions. There are three
tasks: VPN Detection (Task 1) aims to ascertain the use of
VPNs; VPN Service Detection (Task 2) seeks to identify 6 spe-
cific services, namely P2P, Streaming, Email, Chat, VoIP, and
File Transfer; and VPN Application Detection (Task 3) strives
to differentiate 17 distinct applications, including Facebook,
Skype, YouTube, and more. Similarly, the remaining 12 tasks
from other 6 datasets perform different types of classifications.
Generation Tasks: The goal of this task is to generate five
pivotal header fields: the source IP address (Task 16), destina-
tion IP address (Task 17), source port (Task 18), destination
port (Task 19), and the packet length (Task 20) [16]. This
generation process entails the synthesis of 5 header fields to
facilitate the creation of network traffic packets that closely
mirrors real-world scenarios. Such generations are crucial to
the evaluation of innovative networking hardware and software
solutions [16], [20].

IV. EXPERIMENTS

In this section, we perform a fair and holistic evaluation
of SOTA models on the NetBench in both network traffic
classification and generation tasks.

A. Experimental Settings

SOTA Models. We assess the performance of 8 major SOTA
open-source models on NetBench to ensure a comprehensive
and unbiased comparison. Specifically, they include 7 classifi-
cation models, DataNet [11], Fs-net [8], BiLSTM ATTN [10],
DeepPacket [12], TSCRNN [13], ET-BERT [14], YaTC [15],
as well as two competitive generative models, STAN [17] and
Netshare [16]. Note that, ET-BERT and YaTC are foundation
models which could be pre-trained and then fine-tuned on dif-
ferent classification tasks. The detailed experimental settings
of each model are described below. For Fs-net, we follow its
setting that only evaluate its performance in classification tasks
at flow-level. For DataNet, DeepPacket, TSCRNN, and BiL-
STM ATTN, we assess their performance on all classification
tasks at both flow level and packet level. Regarding ET-Bert
and YaTC, we employ the released pre-trained weights and
fine-tune them with the entirety of prepared training dataset.
For generative models, we following the same setting in prior
work [16] to randomly sample consecutive packets from each
dataset, ensuring a consistent evaluation for future studies.
Dataset. We split our benchmark into training, validation, and
testing data with a ratio of 8:1:1 respectively.
Evaluation metrics. For assessing SOTA models in traffic un-
derstanding tasks, we employ two principal metrics: Accuracy
(AC) and Macro F1 Score (F1). To evaluate the traffic gener-
ation performance, we utilize the Jensen-Shannon Divergence
(JSD) and Total Variation Distance (TVD). JSD quantifies
the similarity of two probability distributions, indicating their
shared information, while TVD measures the largest difference
between two probability distributions, capturing the maximum
discrepancy.



TABLE III
COMPARISON RESULTS OF TRAFFIC CLASSIFICATION TASKS FROM TASKS 1 TO 8 (FLOW: FLOW-LEVEL, PKT: PACKET-LEVEL, AC: ACCURACY, F1:

F1-SCORE). FOUNDATION MODELS LIKE ET-BERT AND YATC OUTPERFORM OTHER TRADITIONAL DEEP LEARNING METHODS.

Method
Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8

AC F1 AC F1 AC F1 AC F1 AC F1 AC F1 AC F1 AC F1

Datanet (flow) 0.9406 0.4847 0.6918 0.1363 0.3397 0.0298 0.9987 0.4997 0.4981 0.0950 0.6374 0.3893 0.2096 0.0173 0.0945 0.0153
Datanet (pkt) 0.8836 0.4691 0.5993 0.1249 0.3198 0.0285 0.9961 0.4990 0.3196 0.0692 0.6440 0.3917 0.0817 0.0076 0.0207 0.0002
Fs-net (flow) 0.9258 0.4807 0.2930 0.3367 0.2109 0.3088 0.9976 0.8327 0.8203 0.6354 0.3711 0.2801 0.8203 0.8455 0.0708 0.0411
BiLSTM ATTN (flow) 0.9406 0.4847 0.0057 0.0313 0.3373 0.0484 0.9996 0.9166 0.8833 0.5554 0.6374 0.3893 0.0256 0.0052 0.0045 0.0004
BiLSTM ATTN (pkt) 0.8836 0.4691 0.0303 0.0098 0.3198 0.0285 0.9961 0.4990 0.0722 0.0192 0.6440 0.3917 0.0329 0.0032 0.0003 0.0000
DeepPacket (flow) 0.9408 0.4948 0.6918 0.1363 0.3397 0.0298 0.9998 0.9666 0.4981 0.0950 0.6374 0.3893 0.3110 0.0908 0.0484 0.0004
DeepPacket (pkt) 0.8836 0.4691 0.5993 0.1249 0.3198 0.0285 0.0039 0.0039 0.4727 0.0917 0.6440 0.3917 0.2638 0.0209 0.0238 0.0002
TSCRNN (flow) 0.9406 0.4847 0.6918 0.1363 0.3397 0.0298 0.9987 0.7664 0.4470 0.1340 0.6374 0.3893 0.0839 0.0108 0.0243 0.0024
TSCRNN (pkt) 0.8836 0.4691 0.0303 0.0098 0.3198 0.0285 0.9961 0.4990 0.0722 0.0192 0.6440 0.3917 0.0329 0.0032 0.0037 0.0000

ET-BERT (flow) 0.9964 0.9838 0.7462 0.7110 0.5253 0.6667 1.0000 1.0000 0.9571 0.8029 1.0000 1.0000 0.9786 0.9820 0.8463 0.6770
ET-BERT (pkt) 0.9902 0.9758 0.7653 0.7631 0.5972 0.6956 1.0000 0.9978 0.8469 0.5685 1.0000 1.0000 0.9539 0.9530 0.9687 0.8753
YaTC (flow) 0.9974 0.9880 0.7805 0.7083 0.5991 0.7090 1.0000 1.0000 0.9739 0.8512 1.0000 1.0000 0.9936 0.9949 0.9161 0.8228
YaTC (pkt) 0.9984 0.9961 0.8073 0.8260 0.6458 0.7837 0.9998 0.9896 0.9601 0.8297 1.0000 1.0000 0.9850 0.9874 0.9519 0.8462

TABLE IV
COMPARISON RESULTS OF TRAFFIC CLASSIFICATION TASKS FROM TASKS 9 TO 15 (FLOW: FLOW-LEVEL, PKT: PACKET-LEVEL, AC: ACCURACY, F1:

F1-SCORE). FOUNDATION MODELS LIKE ET-BERT AND YATC OUTPERFORM OTHER TRADITIONAL DEEP LEARNING METHODS.

Method
Task 9 Task 10 Task 11 Task 12 Task 13 Task 14 Task 15

AC F1 AC F1 AC F1 AC F1 AC F1 AC F1 AC F1

Datanet (flow) 0.7795 0.2920 0.0481 0.0005 0.7717 0.7781 0.8261 0.4524 0.2928 0.0906 0.9768 0.4941 0.0250 0.0081
Datanet (pkt) 0.8112 0.2986 0.0429 0.0004 0.3788 0.1832 0.8187 0.4502 0.2907 0.0901 0.0078 0.0078 0.0044 0.0015
Fs-net (flow) 0.5273 0.2314 0.1094 0.0638 0.1758 0.0997 0.4023 0.2869 0.1855 0.0626 0.9023 0.7369 0.6680 0.5481
BiLSTM ATTN (flow) 0.1152 0.0689 0.0029 0.0001 0.3860 0.1857 0.8261 0.4524 0.2609 0.0952 0.9768 0.4941 0.0579 0.0466
BiLSTM ATTN (pkt) 0.0988 0.0600 0.0005 0.0000 0.3788 0.1832 0.8187 0.4502 0.3851 0.1658 0.9922 0.4980 0.0044 0.0015
DeepPacket (flow) 0.7795 0.2920 0.0481 0.0005 0.3660 0.1786 0.8261 0.4524 0.5332 0.1391 0.0232 0.0227 0.3435 0.0852
DeepPacket (pkt) 0.8112 0.2986 0.0429 0.0004 0.3788 0.1832 0.8187 0.4502 0.2907 0.0901 0.0078 0.0078 0.0044 0.0015
TSCRNN (flow) 0.7795 0.2920 0.0284 0.0051 0.3860 0.1857 0.8261 0.4524 0.2928 0.0906 0.9768 0.4941 0.0250 0.0081
TSCRNN (pkt) 0.0988 0.0600 0.0005 0.0000 0.3788 0.1832 0.8187 0.4502 0.2907 0.0901 0.9922 0.4980 0.0044 0.0015

ET-BERT (flow) 0.9762 0.9418 0.7705 0.7426 0.9881 0.9866 1.0000 1.0000 0.9998 0.9980 0.9881 0.8535 0.8809 0.8329
ET-BERT (pkt) 0.9911 0.9785 0.9435 0.9313 0.9736 0.9740 0.9970 0.9948 0.9701 0.9316 0.9957 0.8526 0.8222 0.7804
YaTC (flow) 0.9927 0.9782 0.7531 0.6957 0.9736 0.9705 1.0000 1.0000 0.9990 0.9989 0.9825 0.8356 0.8618 0.7316
YaTC (pkt) 0.9981 0.9933 0.9576 0.9407 0.9868 0.9866 1.0000 1.0000 0.9682 0.7499 0.9936 0.8440 0.8639 0.6254

B. Evaluation Results

Classification Tasks. Table III and IV illustrate the com-
parison results of the 8 SOTA models for traffic classification
using NetBench. From the evaluation results, we can con-
clude with three main insights: (1) Traditional deep learning
methods, such as DataNet, DeepPacket, Fs-net, TSCRNN
and BiLSTM ATTN, exhibit limitations in generalizing to
new tasks, with a noticeable tendency to bias classifications
towards dominant classes. This is evidenced by the f1-score
that is consistently below 0.5 with low recall score due to
data imbalance. (2) Foundation models like ET-BERT and
YaTC significantly outperform these traditional approaches,
showcasing their superior prediction accuracy and general-
ization ability. (3) Although a flow with multiple packets
inherently contains richer information compared to a single
packet, foundation models trained at flow level do not surpass
those trained on packet-level in tasks 3, 8, and 10. This is
attributed to the constraints on the input length for foundation
models as the input flows exceeding a specified length will be
truncated.

Generation Tasks. We also compare the generation perfor-
mance of two open-sourced generative models, STAN and Net-
Share, as shown in Table V. It can be observed that NetShare
performs well in generating IP addresses and port numbers,
while STAN achieves better performance on packet length
generation. The main reason is that NetShare designs bitwise
encoding [16] for IP addresses and IP2Vec encoding [21] for
port numbers, which helps generating these fields accurately.
Conversely, STAN integrates both CNN and mixture density
neural layers to capture joint distribution of packet length
effectively, explaining its superior performance in generating
packet lengths.

V. CONCLUSION

We introduced NetBench, a large-scale and comprehen-
sive benchmark for network traffic analysis, which addressed
the critical issue of fair evaluation and comparison among
different methods. Characterized by its comprehensive design,
NetBench included a total of 20 evaluation tasks across 7
datasets through a unified data processing approach. Further-
more, we evaluated some SOTA models on our benchmark.



TABLE V
EVALUATION RESULTS OF GENERATION TASKS (TASK 16 - 20) USING STAN AND NETSHARE. NETSHARE EXHIBITS GOOD PERFORMANCE IN
GENERATING IP ADDRESSES AND PORT NUMBERS ON MOST DATASETS WHILE STAN PERFORMS BETTER IN GENERATING PACKET LENGTH.

Dataset Method 16 - Source IP 17 - Destination IP 18 - Source Port 19 - Destination Port 20 - Packet Length
JSD TVD JSD TVD JSD TVD JSD TVD JSD TVD

ISCXVPN 2016 STAN 0.1130 0.4107 0.0850 0.3407 0.0186 0.1220 0.0247 0.1791 0.0767 0.3405
NetShare 0.1218 0.3513 0.1269 0.3603 0.1622 0.4966 0.1494 0.4755 0.5451 0.9011

ISCXTor 2016 STAN 0.2089 0.5505 0.2132 0.5615 0.2163 0.5658 0.1998 0.5225 0.2173 0.5665
NetShare 0.0168 0.0880 0.0338 0.1263 0.0736 0.2190 0.0711 0.2269 0.3091 0.7004

USTC-TFC 2016 STAN 0.4421 0.8134 0.4226 0.7855 0.4070 0.7829 0.4767 0.8515 0.3235 0.6952
NetShare 0.0363 0.2148 0.0445 0.2205 0.2268 0.5899 0.1144 0.4091 0.4908 0.8598

Cross Platform (Android) 2020 STAN 0.2446 0.5834 0.4743 0.8498 0.4089 0.7850 0.3727 0.7479 0.2196 0.5845
NetShare 0.0572 0.2909 0.0155 0.1177 0.0520 0.2177 0.0323 0.2216 0.4266 0.8008

Cross Platform (iOS) 2020 STAN 0.3092 0.6537 0.5368 0.9093 0.4594 0.8391 0.4393 0.8181 0.2538 0.6002
NetShare 0.0588 0.2665 0.0261 0.1717 0.0499 0.2176 0.0217 0.1592 0.3981 0.7748

CIRA-CIC-DoHBrw 2020 STAN 0.3710 0.7382 0.2823 0.5867 0.2351 0.5336 0.0960 0.2511 0.0313 0.0875
NetShare 0.3548 0.7113 0.2481 0.5828 0.0359 0.1749 0.0963 0.3605 0.4806 0.8576

CIC IoT Dataset 2023 STAN 0.3094 0.6537 0.5370 0.9093 0.4596 0.8391 0.4394 0.8182 0.3101 0.6548
NetShare 0.0452 0.2598 0.0111 0.0817 0.0666 0.2636 0.0370 0.2126 0.4199 0.7957

The experimental results underscored the benefits of founda-
tion models, which demonstrated superior performance across
a wide range of classification tasks. These observations high-
lighted the significant potential of foundation models to revolu-
tionize network traffic analysis. For traffic generation, very few
foundation models have investigated in this field. This remains
to explore in the future as foundation models have the potential
to excel in generation tasks as they do in classification [22].
Besides, longer input length is needed for foundation models
to better understand the increasingly complex network traffic.
In short, future research could leverage NetBench to train
foundation models in a convenient and straightforward manner
for a variety of downstream network traffic classification and
generation tasks. We believe that our benchmark will promote
advancements in foundation models for network traffic through
fair and comprehensive comparisons.
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